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Figure S1: The effect of PNG extracts on the mRNA expression and activity of 
MMP-9 in TNF-α-induced H9c2 cells. H9c2 cells (5 x 104) were treated with 10 ng/ml 
TNF-α for 72 hr, in the presence of either 0.1% DMSO or 100 μg/ml PNG extracts. a. 
The mRNA expression of MMP-9 was measured by real-time PCR. b. The activity of 
MMP-9 was measured using zymography. Results were shown as mean ± SD, N=4. 
*** p<0.001, **** p<0.0001 compared with TNF-α only. 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2: The effect of PNG extracts on the cytotoxicity and cell viability of H9c2 
cells. a. H9c2 (5 x 104) were treated with 100 μg/ml PNG extracts for 72 hr. The cell 
death was examined by LDH assays. b. The cell viability was determined by MTT 
assays. Results are shown as mean ± SD, N=4, * p<0.05 compared with DMSO (0.1%), 
the solvent of PNG extracts. 
 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3: The effect of fractions separated from PNG-3 and PNG-3-(3+4) on the 
activity of MMP-9 in TNF-α-induced H9c2 cells. H9c2 cells (5 x 104) were treated 
with 10 ng/ml TNF-α for 72 hr, in the presence of either 0.001% DMSO or 100 μg/ml 
fractions. The activities of MMP-9 were measured using zymography. Results were 
shown as mean ± SD, N=4. *** p<0.001, **** p<0.0001 compared with TNF-α only. 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4: Fractionation of F5 using high performance liquid chromatography 
(HPLC). The separation was done using a reversed-phase C18 Lichrospher column (5u, 
250×4.6mm ID) and the detection wavelength was set at 210nm. The gradient program 
consisted of two solvents (A) water and (B) CH3CN at a flow of 1ml/min as follows: 
0-2 min, 5% B; 2-15 min, 5-90% B; 15-17 min, 90% B; 17-20 min, 5% B. F5 was 
further separated into 6 subfractions using the same chromatographic conditions as 
above. The fractionation profile was depending on the retention time of F5. 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5: The 1H (a) and 13C (b) Nuclear Magnetic Resonance (NMR) Spectrum of 
Compound P. The compound was analyzed by a Bruker 600MHz PRX NMR spectrometer, 
operating at 600MHz for 1H and 150MHz for 13C NMR. Methanol-d was used as the solvent. The 
13C NMR (Methanol-d, 150MHz) spectra of compound P showed signals at δ 40.2 (t, C-1), 27.2 (t, 
C-2), 91.3 (d, C-3), 40.6 (s, C-4), 57.6 (d, C-5), 19.2 (t, C-6), 35.8 (t, C-7), 40.9 (s, C-8), 51.1 (d, 
C-9), 37.9 (s, C-10), 30.8 (t, C-11), 71.5 (d, C-12), 49.7 (d, C-13), 52.4 (s, C-14), 31.5 (t, C-15), 
27.2 (t, C-16), 52.9 (d, C-17), 16.69 (q, C-18), 16.3 (q, C-19), 84.9 (s, C-20), 22.5 (q, C-21), 36.8 
(t, C-22), 23.9 (t, C-23), 126.0 (d, C-24), 132.3 (s, C-25), 25.9 (q, C-26), 18.0 (q, C-27), 28.4 (q, C-
28), 16.74 (q, C-29), 17.3 (q, C-30), 104.9 (d, C-1’), 81.0 (d, C-2’), 77.9 (d, C-3’) , 71.6 (d, C-4’), 
78.3 (d, C-5’), 62.8 (t, C-6’), 105.4 (d, C-1’’), 77.7 (d, 2’’), 78.5 (d, 3’’), 71.7 (d, 4’’), 77.9 (d, 5’’), 
63.1 (t, 6’’), 98.1 (d, 1’’’), 75.1 (d, 2’’’), 78.5 (d, 3’’’), 71.7 (d, 4’’’), 76.8 (d, 5’’’), 70.2 (t, 6’’’), 104.5 
(d, 1’’’’), 75.3 (d, 2’’’’), 76.3 (d, 3’’’’), 71.9 (d, 4’’’’), 81.0 (d, 5’’’’), 62.8 (t, 6’’’’).  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S6: Effects of GsRb1 on the cell viability of H9c2 (a) and HepG-2 (b) cells. 
H9c2 or HepG-2 cells were pretreated with GsRb1 (25, 50μg/ml) for 24hrs, then the 
cells were stimulated by recombinant rat TNF-α (10ng/ml) for another 72hrs. After the 
treatment, the cells were incubated with 0.5mg/ml MTT solution for 1hr at 37°C. And 
then 200μl isopropyl alcohol (IPP) was added after the medium was discarded. After 
10 min of incubation, the absorbance was measured at 570nm by using a microplate 
reader (BioRad). Results are shown as mean ±SD from 4 independent experiments.  
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S7: Underlying mechanism involved in TNF-α-indued MMP-9 activation 
in H9c2 cells. a. Effect of different kinase inhibitors on TNF-α-induced MMP-9 protein 
activity in H9c2 cells. Before the treatment of TNF-α (10ng/ml) for 72hrs, H9c2 cell 
(1×105) was pretreated for 1hr with PD 98059 (5μM), SB 203580 (5μM), SP 600125 
(5μM), Wortmannin (20μM) and 2-AP (2.5mM), respectively. The fold induction of 
MMP-9 activity was normalized with that of the TNF-α only treated cells. Results of 
bar graphs are shown as mean ±SD from 4 independent experiments, ****p<0.0001. 
PD, PD 98059; SB, SB 2035820; SP, SP 600125; Wort, Wortmannin. b. Effect of 
different kinase inhibitors on the cell viability in H9c2 cells. N=4, *p<0.05. c. Effect of 
PNG-3 on the phosphorylation of JNK in TNF-α-induced H9c2 cell. N=3. 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S8: Underlying mechanism involved in TNF-α-indued MMP-9 activation 
in HepG-2 cells. a. Effect of different kinase inhibitors on the TNF-α induced MMP-9 
protein activity in HepG-2 cell. Before the treatment of TNF-α (10ng/ml) for 72hrs, 
HepG-2 cell (1×105) was pretreated for 1hr with PD 98059 (5μM), SB 203580 (5μM), 
SP 600125 (5μM), Wortmannin (20μM) and 2-AP (2.5mM), respectively. The fold 
induction of MMP-9 activity was normalized with that of the TNF-α-only treated cells. 
Results of bar graphs are shown as mean ±SD from 4 independent experiments. *p< 
0.05, ***p<0.001, ****p<0.0001. PD, PD 98059; SB, SB 2035820; SP, SP 600125; 
Wort, Wortmannin. b. Effect of different kinase inhibitors on the cell viability in HepG-
2 cell. N=4, **p< 0.01. c. Effect of PNG-3 on the phosphorylation of JNK in TNF-α-
induced H9c2 cell. N=3.  
 
  



Table S1: Summary of MMP-inhibitory saponins in Panax notoginseng. 
 

Compound 
Name 

Cell used In vitro/ 
ex vivo 
Inducer 

Functions Mechanisms References 

Ginsenoside 
Rb1 

Rat Hepatic 
Stellate Cells 
(HSC-T6) 

H2O2 ↓MMP-2 

↓TIMP-1 

---- (1) 

Human 
keratinocytes 

---- ↑MMP-2 

↑MMP-9 

S1P/S1P 
receptor(s)/ERK1/2
/NF-κB 

(2) 

human umbilical 
vein endothelial 
cells (HUVECs) 

TNF-α 

 

↓MMP-2 

↓MMP-9 

JNK, p38 MAPK/ 
NF-κB 

(3) 

Ginsenoside 
Rh1 

Human 
hepatocellular 
carcinoma 
(HepG2) 

Phorbol 
myristate 
acetate 
(PMA) 

↓MMP-1 ↓MAPKs-ERK1/2 
p38 MAPK, 

JNK1/2 

Phosphorylation 

(4) 

human colorectal 
cancer cell line 
SW620 

---- ↓MMP-1 

↓MMP-3 

↑TIMP-3 

↓MAPKs-ERK1/2 
p38 MAPK, 

JNK1/2 

Phosphorylation 

(5) 

Ginsenoside 
Rb2 

Human 
endometrial cancer 
cell lines 

(Ishikawa; 

HHUA; 

HEC-1-A) 

---- ↓MMP-2 

→TIMP-1 

→TIMP-2 

---- (6) 

human dermal 
fibroblasts 

UV-B ↓MMP-2 ---- (7) 

Ginsenoside 
Rd 

Human 
hepatocellular 
carcinoma 
(HepG2) 

---- ↓MMP-1 

↓MMP-2 

↓MMP-7 

↓MAPKs-ERK1/2 

P38 MAPK 
phosphorylation 

(8) 



↓AP-1 activation 

 Human 
keratinocytes 

H2O2 ↓MMP-1 cAMP (9) 

20(S)- 
Ginsenoside 
Rg3 

TC28a2 Human 
Chondrocytes 

TNF-α ↓MMP-9 SIRT1/PGC-
1α/SIRT3/p38 

MAPK/NF-κB 

(10) 

Human ovarian 
cancer 

(SKOV-3) 

---- 

 

↓MMP-9 

 

---- (11) 

Murine 
macrophage cell 
(RAW264.7) 

LPS ↓MMP-9 

 

---- 

 

(12) 

Isolated human 
chondrocytes 

IL-1β ↓MMP-1 

↓MMP13 

---- 

 

(13) 

20(R)- 
Ginsenoside 
Rg3 

Human unbilical 
vein endothelial 
cell (HUVEC) 

---- ↓MMP-2 

↓MMP-9 

---- (14) 

Ginsenoside 
Rh2 
(steamed Panax 
notoginseng) 

Human lung 
adenocarcinoma 
A549, H1299 

---- ↓MMP-9 mir-491 (15) 

Human 
astroglioma 

(U87MG; 

U373MG) 

PMA ↓MMP-1 

↓MMP-3 

↓MMP-9 

↓MMP14 

→MMP-2 

↓MAPKs-ERK1/2 

P38 MAPK, 

JNK1/2 

Phosphorylation 

↓NF-κB,AP-1 
activity 

(16) 

Total saponin 
of Panax 
notoginseng 

Rat,mice, rabbit in vivo ↓MMP-9 ATF3/MAP2K3/p3
8 MAPK/NFκ B 

(17-19) 
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