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Abstract: Toona sinensis (A. Juss.) Roem is an edible medicinal plant that belongs to the genus
Toona in the Meliaceae family. It has been confirmed to display a wide variety of biological
activities. During our continuous search for active constituents from the seeds of 7. sinensis, 2
new acyclic diterpenoids (1-2), together with 5 known limonoid-type triterpenoids (3-7), 5
known apotirucallane-type triterpenoids (8-12), and 3 known cycloartane-type triterpenoids (13—
15), were isolated and characterized. Their structures were identified based on extensive
spectroscopic experiments including nuclear magnetic resonance (NMR), high-resolution
electrospray ionisation mass spectra (HR-ESI-MS), and electronic circular dichroism (ECD), as
well as the comparison with those reported in the literature. We compared these findings to those
reported in the literature. Compounds 5, 8, and 13—14 were isolated from the genus Toona, and
compounds 11 and 15 were obtained from 7. sinensis for the first time. The antidiabetic
nephropathy effects of isolated compounds against high glucose-induced oxidative stress and
inflammation in rat glomerular mesangial cells (GMCs) were assessed in vitro. The results
showed that new compounds 1 and 2 could significantly increase the levels of Nrf-2/HO-1 and
reduce the levels of NF-kB, TNF-a, and IL-6 at concentrations of 30 uM. These results suggest
that compounds 1 and 2 might prevent the occurrence and development of diabetic nephropathy
(DN) and facilitate the research and development of new antioxidant and anti-inflammatory drugs
suitable for the prevention and treatment of DN.
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Computational methods
1. Conformational analysis and structure optimization

The conformers of each configuration that were obtained with conformational analysis were
then optimized with the software package Gaussian 09 at the M062X/6-31G(d) level. Room-
temperature equilibrium populations were calculated according to Boltzmann distribution law

(eq. S1). The energies and populations of dominative conformers were obtained.
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where N,is the number of conformer 1 with energy E and degeneracy g, at temperature 7,

and ks is Boltzmann constant.
2. NMR calculation

NMR calculations were carried out by Gaussian 09 following the protocol adapted from
Lodewyk et al. [1]. The theoretical calculation of NMR was conducted using the Gauge-
Including Atomic Orbitals (GIAO) method at mPWI1PW91/6-31G(d) by the SMD model.
Finally, the calculated NMR chemical shift values were averaged according to Boltzmann
distribution for each conformer and fitting to the experimental values by linear regression. DP4+

probability analysis was performed according to the reported methods [2].
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Figure S1. The effects of compounds 1-15 (80 uM) on cells viability of GMCs were tested by
MTT assay. Values are expressed as mean = SD of three independent experiments, with ~"P <

0.01 relative to the NG.
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Figure S2. 'H NMR spectrum of compound 1 in CDCI3 (600 MHz)
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Figure S3. 1*C NMR spectrum of compound 1 in CDCI3 (150 MHz)
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Figure S4. DEPT 135° spectrum of compound 1 in CDCI3
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Figure S5. 'H-'H COSY spectrum of compound 1 in CDCl3
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Figure S6. HMQC spectrum of compound 1 in CDCls
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Figure S7. HMBC spectrum of compound 1 in CDCl3
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Figure S8. NOESY spectrum of compound 1 in CDCl3
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Figure S9. HR-ESI-MS of compound 1
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Figure S10. 'H NMR spectrum of compound 2 in CDCI3 (600 MHz)
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Figure S12. DEPT 135° spectrum of compound 2 in CDCl3
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Figure S13. 'TH-'H COSY spectrum of compound 2 in CDCl3
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Figure S14. HMQC spectrum of compound 2 in CDCI3
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Figure S15. HMBC spectrum of compound 2 in CDCl3
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Figure S16. NOESY spectrum of compound 2 in CDCl3
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Figure S17. HR-ESI-MS of compound 2
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Figure S18. Chemical structure of the calculated configurations.

Table S1. Statistics of ordinary least squares (OLS) linear regression of experimental and

computed 3*C-NMR chemical shifts.

Configuration DP4+ probability (%) R? RMSE
la 100 0.9924 4.28
1b 0 0.9905 4.63
2a 93.26 0.9951 3.73

2b 6.74 0.9958 3.53




