ical reaction equation

Eq. 11" oH

OH

[12]
Eq.-2 HO. 0 OH
Z8
OH
O.
piceatannol
Eq.3
Eq. 419 L

®

resveratrol pallidol

HO! OH

Explanations or prediction

The exocyclic C=C involved PRC reaction also occurs in
enzymatic lignification.3] Adhering to the second
precondition, subunits in lignin bear para-OH groups.
However, these subunits include caffeoyl, para-coumaroyl,
feruloyl, and sinapyl. VSV 67} Occasionally, the para-OH
group may also be expanded via conjugation or substitution.
Eq. 1 is a typical instance. By comparison, there is neither
meta-coumaroyl nor isoferuloyl because of the presence of a

meta-OH group and the absence of para-OH group.!¥ V27

10], [11],[3]

Eq. 2 shows the dimerization piceatannol to form scirpusin
B. This is an exocyclic C=C participated PRC. Thus,
piceatannol was found to co-exist with its furan-fused dimer,
scirpusin B, the same plant as passion fruit seed.["> Previous
studies have not assigned the configurations of the two
chiral atoms.!'2»!**] Herein, the configuration of scirpusin B
was predicted to be aR,BR, according to the aforementioned
stereochemical characteristics.

Eq. 3 describes the cross-dimerization of E-resveratrol
monomer and its dimer, trans e-viniferin. Thus, the product
ampelopsin E can be considered as a trimer of E-resveratrol.
The trimerization process is also controlled by relevant

rules.

As mentioned above, the trimerization can be regarded as a
PRC reaction between the monomer and dimer. Thus,
stilbene trimerization complies with the rules, especially in
terms of the stereoselectivity. This resembles the chemical
synthesis of stilbene oligomers.®!
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P450 Ktnc . HO' 7
HO WY
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H
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o
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HO' >
Eq. 71" OH
CH30 2,6-utidine CH3°
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& CH4CN, 0.6V
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P450-mediated dimerization is a free radical process.
According to the meta-excluded and C-C bonding
domination rules, 7-demethylsiderin has three possible
linkages, i.e., 8,8, 6,8¢, and 6,6°. Our calculations indicate
that these three possible linkages have similar energies (the
AG values were calculated to be -1450.6955, -1450.6949,
and -1450.6990 Hartree, respectively). Hence, any of these
linkages are possible. However, the P450 enzyme excludes
the 6,6"-linkage.

Cu" oxidation can lead to ROS formation. The ROS (such
as «0y’) can induce tyrosine to undergo a PRC reaction.
According to the meta-excluded and C-C bonding
domination rules, tyrosine can only use the 3-position for

cross-linking.

Eq. 7 is also an exocyclic C=C participated PRC reaction.
However, the reaction is driven by current. Possibly due to
the surplus energy, the reactant can overcome the energy
barrier to produce a pair of enantiomers. However, no
diastereomers are generated. This can also be attributed to
the diastereoselectivity mentioned-above.

Under electrochemical conditions, the phenolic core can be
oxidized into a radical intermediate and initiate a cross-PRC
reaction. In line with the meta-excluded rule, both the 5- and
7-positions were preferential sites for reaction. Our
calculations suggest that the AG value (-1224.0282
Hartree) of the para-S linkage was lower than that of the
para-7 linkage (-1224.0276 Hartree). Thus, the cross-PRC
reaction can be described using Eq. 8.
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Eq.92! R According to the ortho-diOHs co-activated rule, all sites may

OH
oH Z /| OH be linked and thus, the description shown in Eq. 9 is
2| N 2DPPH. 107" X Sl generally acceptable. A similar instance can also be found in
. AP OH I// the catecholic unit of peptides.'??)
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