
 

Entry  Typical reaction equation Explanations or prediction Field 

Eq. 1[1] 

 

The exocyclic C=C involved PRC reaction also occurs in 

enzymatic lignification.[2],[3] Adhering to the second 

precondition, subunits in lignin bear para-OH groups. 

However, these subunits include caffeoyl, para-coumaroyl, 

feruloyl, and sinapyl.[4],[5],[6],[7] Occasionally, the para-OH 

group may also be expanded via conjugation or substitution. 

Eq. 1 is a typical instance. By comparison, there is neither 

meta-coumaroyl nor isoferuloyl because of the presence of a 

meta-OH group and the absence of para-OH group.[8, 9],[2, 7, 

10], [11], [3]  

lign
in

 ch
em

istry Eq. 2[12] 

 

 

  

Eq. 2 shows the dimerization piceatannol to form scirpusin 

B. This is an exocyclic C=C participated PRC. Thus, 

piceatannol was found to co-exist with its furan-fused dimer, 

scirpusin B, the same plant as passion fruit seed.[13] Previous 

studies have not assigned the configurations of the two 

chiral atoms.[12],[13] Herein, the configuration of scirpusin B 

was predicted to be αR,βR, according to the aforementioned 

stereochemical characteristics.  

Eq. 3[14] 

 

Eq. 3 describes the cross-dimerization of E-resveratrol 

monomer and its dimer, trans ε-viniferin. Thus, the product 

ampelopsin E can be considered as a trimer of E-resveratrol. 

The trimerization process is also controlled by relevant 

rules. 
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Eq. 4[15] 

 

As mentioned above, the trimerization can be regarded as a 

PRC reaction between the monomer and dimer. Thus, 

stilbene trimerization complies with the rules, especially in 

terms of the stereoselectivity. This resembles the chemical 

synthesis of stilbene oligomers.[16] 



Eq. 5[17] 

 

P450-mediated dimerization is a free radical process. 

According to the meta-excluded and C-C bonding 

domination rules, 7-demethylsiderin has three possible 

linkages, i.e., 8,8‘, 6,8‘, and 6,6‘. Our calculations indicate 

that these three possible linkages have similar energies (the 

ΔG values were calculated to be –1450.6955, –1450.6949, 

and –1450.6990 Hartree, respectively). Hence, any of these 

linkages are possible. However, the P450 enzyme excludes 

the 6,6‘-linkage. 
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Eq. 6[18] 

 

Cu+ oxidation can lead to ROS formation. The ROS (such 

as •O2
-) can induce tyrosine to undergo a PRC reaction. 

According to the meta-excluded and C-C bonding 

domination rules, tyrosine can only use the 3-position for 

cross-linking.  
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Eq. 7[19] 

 

Eq. 7 is also an exocyclic C=C participated PRC reaction. 

However, the reaction is driven by current. Possibly due to 

the surplus energy, the reactant can overcome the energy 

barrier to produce a pair of enantiomers. However, no 

diastereomers are generated. This can also be attributed to 

the diastereoselectivity mentioned-above. 
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Eq. 8[20]  

 

Under electrochemical conditions, the phenolic core can be 

oxidized into a radical intermediate and initiate a cross-PRC 

reaction. In line with the meta-excluded rule, both the 5- and 

7-positions were preferential sites for reaction. Our 

calculations suggest that the ΔG value (–1224.0282 

Hartree) of the para-5 linkage was lower than that of the 

para-7 linkage (–1224.0276 Hartree). Thus, the cross-PRC 

reaction can be described using Eq. 8. 
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Eq. 9[21] 

 

According to the ortho-diOHs co-activated rule, all sites may 

be linked and thus, the description shown in Eq. 9 is 

generally acceptable. A similar instance can also be found in 

the catecholic unit of peptides.[22] 
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