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Figure S1: 'H NMR spectrum (500 MHz, CD,0D d,, TMS) of lindoldhamine isomer.
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Figure S2: Expanded low-field regions of the *H NMR spectrum (500 MHz, CD,0D d,, TMS) of lindoldhamine isomer.
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Figure S3: HSQC spectrum (125 MHz, CD,0D, TMS) of lindoldhamine isomer.
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Figure S4: Expanded regions of the HSQC spectrum (125 MHz, CD,0D, TMS) of lindoldhamine isomer.
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Figure S5: HMBC spectrum (125 MHz, CD;0D, TMS) of lindoldhamine isomer.
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Figure S6: Expanded regions of the HMBC spectrum (125 MHz, CD,0D, TMS) of lindoldhamine isomer.
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Table S1: NMR chemical shifts of lindoldhamine isomer. The experiments were realized in

CD30D at magnetic field strength of 11.7 T; 500 MHz for *H NMR.

s: singlet; m: multiplet; dd: doublet of doublets; ddd: doublet of doublets of doublets.

1H 13c
Position 5., ppm (multiplicity; number of H; J, Hz)  &c (HSQC), ppm® HMBC, ppm?
1 4.59 (t;1H; 7.1 Hz) 56.1 C-15; C-4a
3 3.40 (m: 2H) 39.3 C-4;C-1;C-8a
4 3.03 and 3.07 (m; 2H) 24.9 C-3;C-1
4a - 1245 -
5 6.77 (s; 1H) 111.4 C-4;C-8; C-8a; C-4a; C-7; C-6
6 - 148.2 -
6-OCH; 3.82 (s; 3H) 55.2 C-7;C6
7 - 145.6 -
8 6.48 (s; 1H) 1131 C-6 OCHs; C-8a; C-7; C-6
8a - 123.1 -
9 - 131.1 -
10 7.25 (d;1H; 8.5 Hz) 130.6 C-15; C-11; C-9; C-12; C-14
11 6.93 (d; 1H; 8.5 Hz) 117.5 C-13;C-9; C-12
12 - 157.8 -
13 6.93 (d;1H:; 8.5 Hz) 1175 C-11; C-9; C-12
14 7.25 (d;1H; 8.5 Hz) 126.0 C-15; C-13; C-10; C-9; C-12
15 S Em iﬂ; 393 C-1; C-8a; C-14; C-10; C-9
1’ 4.55 (t; 1H; 7.1 Hz) 56.4 C-15°; C4a’
3’ 3.49 (m; 2H) 39.4 C-4’; C-1’; C-8a’
4 2.98 and 2.99 (m; 2H) 24.8 C-3’; C-1; C-8a’; C-4a’
4a’ - 124.3 -
5 6.72 (s: 1H) 111.3 C-4’; C-8’; C-4a’; C-7°; C-6’
6’ - 148.2 -
6’-OCH3 3.84 (s; 3H) 55.1 C-7’; C-6’
7 - 145.7 -
8 6.59 (s; 1H) 112.9 C-8a’; C-1’; C-7°; C-6
8a’ - 123.0 -
9’ - 127.7 -
10° 6.76 (s; 1H) 121.9 C-157; C-14’; C-12°
11’ - 144.5 -
12 - 148.8 -
13’ 6.98 (d;1H; 8.5 Hz) 117.6 C-15°;C-9’; C-11’; C-12°
14 6.99 (dd;1H; 8.5 and 2.0 Hz) 126.0 C-157; C-10’; C-12°
15’ o % iﬂg 39.3 C-1%; C-10°; C-8a’; C-147; C-9”

2 13C NMR signals were assigned using the HSQC and HMBC data.
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Figure S7: Mass spectrum (MS/MS) of lindoldhamine isomer with chemical structure and
identification of the main fragment ions.
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Figure S9: 'H NMR spectrum (500 MHz, CD,0D, TMS) of stepharine.
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Figure S12: HSQC spectrum (125 MHz, CD,0D, TMS) of stepharine.
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TD 2048
SOLVENT MaOD

NS 186

DS 16

SWH 6421 .233 Hz
FIDRES 3.135368 H=z
AD 0.1594709 sec
RG 187.25

DW 77.867 usec
DE 10.00 usec
TE 298.2 K
CNSTZ2 145.0000000
CNST13 8.0000000

Do 0.00000300 sec
D1 1.00000000 sec
D2 0.00344828 sec
D& 0.06250000 sec
Dls 0.00020000 sec
INO 0.00001660 sec
TDaw 1
SFOCl 500.1322062 MH=z
Nucl 1H

Pl 9.40 usec
P2 18.80 usec
PLW1 20.32299995 W
SFO2 125.7716219 MH=z
NuUcz2 13cC

P3 10.00 usec
PLWZ2 88.00000000 W
GENAM[1] SMS010.100
GPZ1 50.00 %
GPNAMI[2] SMSQ10.100
GPZ2 30.00 %
GPNAMI[ 3] SMSsSQl10.100
GPZ3 40.10 %
Ple 1000.00 usec
Fl — Acquisition parameters
TD 240
SFol 125.7716 MH=z
FIDRES 251.004013 H=z
SW 239.486 ppm
FnMODE oF

F2 — Processing parameters
ST 40986

SF 500.1300128 MH=z
WDW STNE

SS5B o}

LB 0 H=z

GB 0

PC 1.40

Fl — Processing paramseters
ST 1024

MC2 oF

SF 125.7578149 MH=z
WDW STNE

SSB 0

LB 0 H=z

GB 0
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Figure S14: HMBC spectrum (125 MHz, CD,0D, TMS) of stepharine.
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Figure S15: Expanded regions of the HMBC spectrum (125 MHz, CD;0D, TMS) of stepharine.



Table S2: NMR chemical shifts of stepharine. The experiments were realized in CD30D at

magnetic field strength of 11.7 T; 500 MHz for *H NMR.

s: singlet; m: multiplet; dd: doublet of doublets; ddd: doublet of doublets of doublets.

1
. H
Position 8w, ppm (multiplicity; number of H; J, Hz)  §¢ (HSQC), ppm® HMBC, ppm*
1 - 144.6 -
1 -OCHs 3.61 (s; 3H) 59.9 C-1
la - 133.8 -
2 - 154.7 -
2 -OCHjs 3.82(s; 3H) 55.4 C-2
3 6.89 (s ; 1H) 112.1 C-1; C-2; C-3b; C-4
3a - 131.5 -
3b - 129.3 -
4 3.00 (m; 2H) 235 -
3.44 (m; 1H) _
5 3.69 (ddd; 1H: 13, 5.9, and 2.3 Hz) 437
6 -NH 1.95 (s) - -
6a 4.72 (m; 1H) 56.5 C-la
2.42 (dd; 1H; 12 and 10.5 Hz) 44.9 C-1a; C-3b; C-6a;
7 2.52 (dd; 1H; 12 and 6.5 Hz) : C-7a; C-8; C-12
7a - 50.7 -
8 7.16 (dd; 1H; 10 and 3 Hz) 150.3 C-7; C-7a; C-10
9 6.29 (dd; 1H; 10 and 1.9 Hz) 126.7 C-7a
10 - 186.5 -
11 6.41 (dd; 1H; 10 and 1.9 Hz) 127.8 C-7a
12 7.02 (dd; 1H; 10 and 3 Hz) 153.6 C-10

213C NMR signals were assigned using the HSQC and HMBC data.
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Figure S16: Mass spectrum (MS/MS) of stepharine with chemical structure and identification of the main fragment ions.
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Figure S17: Hight resolution mass spectrum of stepharine with chemical structure.
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Current Data Parameters
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PROBHD Z2119470_0223 (
PULPROG zg30
TD 65536
SOLVENT MeOD
NS 16
DS 2
SWH 10000.000 Hz
FIDRES 0.305176 Hz
AQ 3.2767999 sec
RG 104.08
DW 50.000 usec
DE 10.00 usec
TE 298.1 K
D1 1.00000000 sec
TDO 1
SFO1 500.1330883 MHz
NUC1 1H
PO 3.43 usec
Pl 10.30 usec
PLW1 20.32299995 W
F2 - Processing parameters
sI 131072
SF 500.1300113 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

(3] [+ o™ O o o — CDf%L ™| ) o)
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Figure S18: 'H NMR spectrum (500 MHz, CD,0OD dg, TMS) of palmatine.
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Figure S19: Expanded low-field region of the *H NMR spectrum (500 MHz, CD,0OD d,, TMS) of palmatine.
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Current Data Parameters

NAME
EXPNO
PROCNO

200
1

F2 - Acquisition Parameters
Date

Time 23.25 h
INSTRUM spect.
PROBHD  z119470_0223 (
PULPROG hsqcetgpsisp2.2
2048

SOLVENT MeOD
NS 64
DS 16
SWH 6996.269 Hz
FIDRES 3.416147 Hz
AQ 0.1463637 sec
RG 187.25
DW 71.467 usec
DE 10.00 usec
TE 298.2 K
CNST2 145.0000000
CNST17 -0.5000000
DO 0.00000300 sec
D1 1.00000000 sec
D4 0.00172414 sec
D11 0.03000000 sec
D16 0.00020000 sec
D24 0.00089000 sec
INO 0.00001850 sec
TDav 1
SFOl 500.1325097 MHz
NUC1 1H
Pl 9.40 usec
P2 18.80 usec
P28 1000.00 usec
PLW1 20.32299995 W
SFO2 125.7703643 MHz
Nuc2 13c
CPDPRG([2 gar,
P3 10.00 usec
P14 500.00 usec
P24 2000.00 usec
PCPD2 70.00 usec
PLWO
PLW2 88.00000000 W
PLW12 1.78668594 W
SPNAM[3] Crp60,0.5,20.1
SPOAL3 0.500
SPOFFS3 0 Hz
SPW3 13.44499969 W
SPNAM([7] Crp60comp. 4
SPOAL7 0.500
SPOFFS7 0 Hz
SPW7 13.44499969 W
GPNAM[1] SMSQ10.100
GPZ1 80.00 %
GPNAM[2] SMSQ10.100
GP22 20.10 %
GPNAM[3] SMSQ10.100

Z3 11.00 %
GPNAM[4] SMSQ10.100
GPZ4 -5.00 %
P16 1000.00 usec
P19 600.00 usec

F1 - Acquisition parameters
™ 256

SFO1
FIDRES
SW
FnMODE

SI
SF
WDW
SSB
LB
GB
PC

125.7704 MHz
211.148651 Hz
214.892 ppm

Echo-Antiecho

F2 - Processing parameters
96

500.1300115 MHz
QSINE
2

1.40

Fl - Processing parameters

SI
MC2
SF
WDW
SSB
LB

GB

echo-antiecho

125.7577885 MHz
QSINE
2

LI ™

Figure S20: HSQC spectrum (125 MHz, CD,0D, TMS) of palmatine.
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Figure S21: Expanded regions of the HSQC spectrum (125 MHz, CD3;0D, TMS) of palmatine.
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Current Data Parameters
NAME
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F2 - Acquisition Parameters
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Time 4.46 h
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PROBHD 2119470 0223 (
PULPROG hmbcgplpndqgf

TD 2048
SOLVENT MeOD

NS 98

Ds 16

SWH 7002.801 Hz
FIDRES 3.419337 Hz
AQ 0.1462272 sec
RG 187.25

DW 71.400 usec
DE 10.00 usec
TE 298.2 K
CNST2 145.0000000
CNST13 8.0000000

DO 0.00000300 sec
D1 1.00000000 sec
D2 0.00344828 sec
D6 0.06250000 sec
D16 0.00020000 sec
INO 0.00001660 sec
TDav 1

SFO1 500.1325097 MHz
NUC1 1H

Pl 9.40 usec
P2 18.80 usec
PLW1 20.32299995 W
SFO2 125.7716219 MHz
NUC2 13c

P3 10.00 usec
PLW2 88.00000000 W
GPNAM[1] SMSQ10.100

GPZ1 50.00 %
GPNAM([2] SMSQ10.100

GPZ2 30.00 %
GPNAM([3] SMSQ10.100

GP23 40.10 %
P16 1000.00 usec

Fl - Acquisition parameters

TD 312
SFoO1 125.7716 MHz
FIDRES 193.080017 Hz
sW 239.486 ppm
FnMODE QF

F2 - Processing parameters
SI 4096

SF 500.1300115 MHz
WDW SINE

SSB (o]

LB 0 Hz

GB o]

PC 1.40

Fl - Processing parameters
SI 1024

MC2 QF

SF 125.7577885 MHz
WDW SINE

SSB (o]

LB 0 Hz

GB o

L

n
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e
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g e
1 ]
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Figure S22: HMBC spectrum (125 MHz, CD,0D, TMS) of palmatine.
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Table S3: NMR chemical shifts of palmatine. The experiments were realized in CD30D at
magnetic field strength of 11.7 T; 500 MHz for *H NMR.

s: singlet; m: multiplet; dd: doublet of doublets; ddd: doublet of doublets of doublets.

. 1H e
Position 5, ppm (multiplicity; number of H; J, Hz) & (HSQC), ppm HMBC, ppm?
1 7.08 (s; 1H) 110.6 C-5; C-4a; C-2; C-3
2 - 152.2 -
2-OCH3 4.02 (s; 3H) 57.7 C-2
3 - 155.1 -
3-OCHs 3.97 (s; 3H) 57.2 C-3
C-13b; C-13a; C-2;
4 7.69 (s; 1H) 112.8 i
C-3
4a - 121.9 -
C-6; C-1; C-4; C-
5 3.30 (m; 2H) 29.1 42 C-13b
C-5; C-13b; C-13a;
6 4.96 (m; 2H) 58.5 i
C-8
7 ) ) -
C-6; C-13a; C-12;
8 9.79 (s; 1H) 146.9 C-8a: C-9
8a - 136.6 -
9 - 147.1 -
9-OCHzs 4.24 (s; 3H) 63.2 C-9
10 - 153.3 -
10-OCHjs 4.14 (s; 3H) 58.5 C-10
C-12;C-8a; C-9; C-
11 8.14 (d;1H; 9.3 Hz) 128.7 10
C-12a; C-8a; C-9;
12 8.04 (d; 1H; 8.8 Hz) 125.1 c10
12a - 122.7 -
13 8.82 (s; 1H) 121.8 C-12; C-13a
13a - 141.2 -
13b - 131.5 -

3 13C NMR signals were assigned using the HSQC and HMBC data.
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Figure S24: Mass spectrum (MS/MS) of palmatine with chemical structure and identification of the main fragment ions.

31



Intens,

x106 ]
3.0-
1 3521616
2.5: ,I.,
353.1603
] »
2.0+
1.5
137.1322
1.0 Py
0.5 ‘
191.0705 2208.0951 230.0770 263.0956:0 308.1285 3221090 l 350.2524
- e o - ? 11— T

Figure S25: Hight resolution mass-spectrum of palmatine with chemical structure.
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FIDRES 0.152588 H=z
AQ 3.2767999 sec
RG 147.17
DW 50.000 usec
DE 10.00 usec
TE 298.2 K
D1 1.00000000 sec
TDO 1
SFoOl1 500.1330883 MH=z
NUC1 1H
Pl 9.40 usec
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Figure S26: 'H NMR spectrum (500 MHz, DMSO dg, TMS) of 5-N-methylmaytenine.
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Figure S27: Expanded low-field region of the *H NMR spectrum (500 MHz, DMSO d,, TMS) of 5-N-methylmaytenine.
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Figure S29: Expanded regions of the'3C NMR spectrum (125 MHz, DMSO d,, TMS) of 5-N-methylmaytenine.
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Figure S30: Expanded regions of the 13C NMR spectrum (125 MHz, DMSO d;, TMS) of 5-N-methylmaytenine.
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Figure S31: Expanded region of the 13C NMR spectrum (125 MHz, DMSO d,, TMS) of 5-N-methylmaytenine.
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Figure S32: HMBC spectrum (125 I\/;Ig—lz DMSO dg, TMS) of 5-N-methylmaytenine.
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Figure S33: Expanded regions of the HMBC spectrum (125 MHz, DMSO d,, TMS) of 5-N-methylmaytenine.



Current Data Parameters
NAME

EXPNO 200
PROCNC 1

F2 - Acquisition Parameters
Date

Time 1.17h
INSTRUM spect
PROBHD Z119470_0223 (
PULPROG hsgcetgpsisp2.2
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SOLVENT DMSO
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FIDRES 2.920342 Hz
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GPZ2 20.10 %
GPNAM[3] SMSQ10.100

GPZ3 11.00 %
GPNAM[4] SMSQ10.100

GPZ4 -5.00 %
Plé 1000.00 usec
P19 600.00 usec

Fl - Acquisition parameters
TD 256

SFO1 125.7704 MHz
FIDRES 211.148651 Hz
SW 214.892 ppm
FnMODE Echo-Antiecho

F2 - Processing parameters
4096

SF 500.1300000 MHz
WDW QSINE

SSB 2

1B 0 Hz

GB 0

PC 1.40

Fl - Processing parameters
SI

MC2 echo-antiecho

SF 125.7577867 MHz
WDW QSINE

SSB 2

LB 0 Hz

GB 0
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Figure S34: HSQC spectrum (125 MHz, DMSO d;, TMS) of 5-N-methylmaytenine.
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Figure S35: Expanded regions of the HSQC spectrum (125 MHz, DMSO d,, TMS) of 5-N-methylmaytenine.
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Current Data Parameters

NAME

EXPNC 3
PROCNO 1

F2 — Acguisition Parameters
Date

Time 23.25 h
INSTRUM spect
PRCBHD Z£119470_0223 {
PULPROG deptspl35

TD 32768
SOLVENT DMSO

NS 2048

DS 8

SWH 29761 .904 H=z
FIDRES 0.908261 H=z
AQ 0.5505024 sec
RG 187.25

DW 16.800 usec
DE 10.00 usec
TE 298.2 K
CNST2 145.0000000

D1 2.00000000 sec
D2 0.00344828 sec
D12 0.00002000 sec
TDO 1

SFO1 125.7716219 MH=z
Nucil 13¢C

Pl 10.00 usec
P13 2000.00 usec
PLWO 0w

PLW1 88.00000000 W
SPNAMI[5] Crpé60comp . 4
SPOALS 0.500
SPOFFSS5 0 Hz

SPW5 13.444999%969 W
SFO2 500.1320005 MH=z
NuUcz2 in
CPDPRGI[2 waltzlé

P3 9.40 usec
P4 18.80 usec
PCPD2 80.00 usec
PLW2 20.32299995 W
PILW1Z2 0.28058001 wW
F2Z — Processing parameters
ST 65536

SF 125.7577885 MHz
WDW EM

SSB Q

1B 3.00 Hz
GB 0

PC 1.40
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Figure S36: DEPT-135° spectrum (125 MHz, DMSO d;, TMS) of 5-N-methylmaytenine.
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Figure S37: Expanded regions of the DEPT-135° spectrum (125 MHz, DMSO dg, TMS) of 5-N-methylmaytenine. 44



Table S4: NMR chemical shifts of 5-N-methylmaitenine. The experiments were realized in
DMSO ds at magnetic field strength of 11.7 T; 500 MHz for *H and 125 MHz for 3C NMR;

s: singlet; d: doublet; t: triplet; m: multiplet.

1H 13C
Position Sn, ppm (multiplicity; HMBC. ppm
number of H; J, Hz) COSY, ppm 8¢, ppm PP
4" and 4~ - - 135.43 -
1 or1” - - 165.27 -
17orl’ - - 165.32 -
5 and 5" or : H-3’, H-7"; C-3’; C-37, C-77; C-77;
9 and 9~ 7.56 —7.54 (m1 2H) H_3”; H-77 127.98 C_9’; C-9” or C_S,; C-5”
9 and 9 or : H-3’; H-3”; C-3’;C-3", C-7; C-77;
5ands’ 00 54 (Mi2H) H-7"; H-7" 127.94 C-5’; C-5” or C-9°; C-9”
6, 6,, . H'3’; H'3”; 9. 9. 2. E)
P 7.56 —-7.54 (m; 4H , , 129.39 C-3’; C-37; C-7’; C-7
8’and 8 ( ) H-7°; H-7
H-5’; H-5”
7 and 77 7.40 (m; 2H) H-6’; H-6” 129.83 C-5’; C-57,C-9’; C-9”
H-9’; H-9”
H-2>; H-2”
, ,r . H_S’; H_S” C_l’; C_l”; C_2’; C_Z”; C_4,;
3 or 3 742 (m, lH) H-6,; H_6,, 13885 C'4”; C'S’; C'S”; C_9’; C_9”
H-9’; H-9”
H-2’; H-2”
oo . H-5’; H-5” C-1’; C-17; C-27; C-27; C-47;
3 or 3 7.38 (m, 1H) H_6,; H_6,, 138.88 C'4”; C'S’; C'S”; C_9’; C_9”
H-9’; H-9”
2°or 2 6.63 (d; 1H; 16 Hz) H-3’; H-3” 122.79 C-1;C-17; C-4’; C-4»
27 or2° 6.60 (d; 1H; 16 Hz) H-3’; H-3” 122.83 C-1’;C-17;C-4°, C-4
1and 10 ) »
8.12 (t; 5.5 Hz) H-2: H-9 - C-1; C-1
N-H ’
2 3.20 (m; 2H) H-3; -NH 37.58 C-1’;C-17,C-3;C-4
9 3.18 (m; 2H) H-8; -NH 39.07 C-1’;C-1”;C-8
4 2.35 (m; 2H) H-3 55.26 C-2;C-3;C-5;C-6
6 2.32 (m; 2H) H-7 57.12 C-4,C-8
5 N-CHs 2.16 (s; 3H) - 42.09 C-4,C-6
3 1.61 (m; 2H) H-2; H-4 27.28 C-4;C-2
8 1.47 (m; 2H) H-9 24.53 C-7
7 1.45 (m; 2H) H-6 27.48 C-8
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Figure S38: Mass spectrum (MS/MS) of 5-N-methylmaytenine with chemical structure and identification
of the main fragment ions.
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Figure S39: Hight resolution mass-spectrum of 5-N-methylmaytenine with chemical structure.
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Current Data Parameters

NAME
EXPNO 11
PROCNO 1

F2 - Acquisition Parameters
Date

Time 17.29 h
INSTRUM spect
PROBHD 2119470_0223 (
PULPROG Zgpr

TD 32768
SOLVENT MeOD

NS 32

DS 2

SWH 8012.820 Hz
FIDRES 0.489064 Hz
AQ 2.0447233 sec
RG 147.17

DW 62.400 usec
DE 10.00 usec
TE 298.1 K
D1 2.00000000 sec
D12 0.00002000 sec
TDO 1
SFol 500.1324313 MHz
NUC1 1H

Pl 10.30 usec
PLW1 20.32299995 W
PLW9 0.00008624 W
F2 - Processing parameters
sI 32768

SF 500.1300116 MHz
WDW EM

SSB 0

LB 0.30 Hz
GB 0

PC 1.00

TN OO AN -~ 00 0 0 O O ~ =
<r r* r4 C) C) C) C) C} C> r- P‘ :P 07 0 = < o -~-r-r-
STigprrsres TR
O\©\/\ i
N 4
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/Jl\\V///\\\[::;::l\\c)(:P*S
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A 'y e a0
h{ﬁ N (e o
00| O i o ™
c§c§.-|.-|c> ™ ~ ~
| T | | | | | | | | L
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

Figure S40: 'H NMR spectrum (500 MHS’ CD,0D dg, TMS) of N-trans-feruloyltyramine.
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Figure S41: Expanded low-field region of the *H NMR spectrum (500 MHz, CD,OD d,, TMS) N-trans-feruloyltyramine.
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Current Data Parameters
NAME

EXPNO 200
PROCNO 1

F2 - Acquisition Parameters
Date

Time 1.50 h
INSTRUM spect
PROBHD 2119470_0223 (
PULPROG hsqcetgpsisp2.2

™ 2048

SOLVENT MeOD

NS 64

DS 16

SWH 10000.000 Hz
FIDRES 4.882813 Hz
AQ 0.1024000 sec
RG 187.2

DW 50.000 usec
DE 10.00 usec
TE 298.2 K
CNST2 145.0000000
CNST17 -0.5000000

DO 0.00000300 sec
D1 1.00000000 sec
D4 0.00172414 sec
D11 0.03000000 sec
D16 0.00020000 sec
D24 0.00089000 sec
INO 0.00001850 sec
TDav 1
SFO1 500.1330883 MHz
NUC1 1H

Pl 9.40 usec
P2 18.80 usec
P28 1000.00 usec
PLW1 20.32299995 W
SFO2 125.7703643 MHz
NuUC2 13c
CPDPRG[2 garp

P3 10.00 usec
P14 500.00 usec
P24 2000.00 usec
PCPD2 70.00 usec
PLWO ow

PLW2 88.00000000 W
PLW12 1.78668594 W
SPNAM([3] Crp60,0.5,20.1
SPOAL3 0.500
SPOFFS3 0 Hz

SPW3 13.44499969 W
SPNAM([7] Crp60comp. 4
SPOAL7 0.500
SPOFFS7 0 Hz

SPW7 13.44499969 W
GPNAM([1] SMSQ10.100
GPZ1 . %
GPNAM([2] SMSQ10.100
GPZ2 20.10 %
GPNAM([3] SMSQ10.100
GPZ3 11.00 %
GPNAM[4] SMSQ10.100
GPZ4 -5.00 %
P16 1000.00 usec
P19 600.00 usec

Fl - Acquisition parameters
™ 256

SFO1 125.7704 MHz
FIDRES 211.148651 Hz
SW 214.892 ppm

FnMODE Echo-Antiecho

F2 - Processing parameters

SI 4096

SF 500.1300105 MHz
WDW QSINE

SSB 2

1B 0 Hz

GB 0

PC 1.40

Fl - Processing parameters
SI 1024

MCc2 echo-antiecho

SF 125.7576744 MHz
WDW QSINE

SSB 2

1B 0 Hz

GB 0

HO

OCHj,
OH

Jl ] A b i A W ) I ..

—
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-
-
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Figure S42: HSQC spectrum (125 MHz, CD;0D, TMS) N-trans-feruloyltyramine.
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Figure S43: Expanded regions of the HSQC spectrum (125 MHz, CD;0D, TMS) N-trans-feruloyltyramine.
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C Data Pa t
NAME

EXPNO 300
PROCNO 1

F2 - Acquisition Parameters
Date

Time 7.00 h
INSTRUM spect
PROBHD 2119470 0223 (
PULPROG hmbcgplpndqgf

T™D 2048
SOLVENT MeOD

NS 168

Ds 16

SWH 10000.000 Hz
FIDRES 4.882813 Hz
AQ 0.1024000 sec
RG 187.25

DW 50.000 usec
DE 10.00 usec
TE 298.2 K
CNST2 145.0000000
CNST13 8.0000000

Do 0.00000300 sec
D1 1.00000000 sec
D2 0.00344828 sec
Dé 0.06250000 sec
D16 0.00020000 sec
INO 0.00001660 sec
TDav 1

SFO1 500.1330883 MHz
NUCl 1H

Pl 9.40 usec
P2 18.80 usec
PLW1 20.32299995 W
SFO2 125.7716219 MHz
NuUC2 13c

P3 10.00 usec
PLW2 88.00000000 W
GPNAM[1] SMSQ10.100

GPZ1 50.00 %
GPNAM[2] SMSQ10.100

GP22 30.00 %
GPNAM[3] SMSQ10.100

GPz3 40.10 %
P16 1000.00 usec
Fl - Acquisition parameters
TD 255

SFO1 125.7716 MHz
FIDRES 236.239075 Hz
SW 239.486 ppm
FnMODE QoF

F2 - Processing parameters

SF 500.1300117 MHz
WDW SINE

SsSB ]

LB 0 Hz

GB 0

PC 1.40

Fl - Processing parameters

MC2 QF

SF 125.7576053 MHz
WDW SINE

ssB 0

LB 0 Hz

GB 0

HO

o)
NN
H
OCHj,

Figure S44:
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HMBC spectrum (125 MHz, CD,0D, TMS) of N-trans-feruloyltyramine.
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Figure S45: Expanded regions of the HMBC spectrum (125 MHz, CD3OD TMS) of N- trans—feruloyltyramme.
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Table S5: NMR chemical shifts of N-trans-feruloyltyramine. The experiments were realized
in CD3s0OD at magnetic field strength of 11.7 T; 500 MHz for *H NMR.

s: singlet; m: multiplet; dd: doublet of doublets; ddd: doublet of doublets of doublets.

y H =C
Position 8w, ppm (multiplicity; number of H; J, Hz)  §¢ (HSQC), ppm? HMBC, ppm?
1 - 123.4 -
2 7.11 (d; 1H; 1.8 H2) 111.1 C-1;C-7;C4
3 ; 148.8 -
4 - 150.2 -
4-OCH3 3.88 (s; 3H) 56.0 C-4
5 6.70 (m; 1H) 1157 Cc3
6 7.03 (dd; 1H; 1.8 and 8.5 Hz) 122.7 C-2;C-7,C4
7 7.44 (d; 1H; 16 Hz) 1415 C-2;C-1;C-9
8 6.40 (d; 1H: 16 Hz) 118.4 c9
9 - 169.3 -
1’ - 130.9 -
> 7.06 (m: 1H) 130.2 C-7’; C-1’; C-4’
3 6.72 (m: 2H) 1157 C-1’; C-4
4 - 157.1 -
5 6.72 (m; 2H) 1157 C-1%; C-4
6 7.06 (m: 1H) 130.2 C-7;C-1"; C-4’
7’ 2.75 (m; 2H) 354 C-8%; C-1°
g’ 3.46 (m; 2H) 421 C-7’;C-1; C-9

213C NMR signals were assigned using the HSQC and HMBC data.
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Figure S46: Mass spectrum (MS/MS) of N-trans-feruloyltyramine with chemical structure and identification
of the main fragment ions.
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Figure S47: Hight resolution mass-spectrum of N-trans-feruloyltyramine with chemical structure.
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SCHRODINGER.

Report S1
MD Simulation Report on AChE - Neostigmine Interactions

Simulation Details

Jobname: md_job_6H12_ NEO-3_best_10ns_TIP4PEw
Entry title: Setup_6H12_NEO-3-best_mmgbsa

CPU # Job Type Ensemble Temp. [K] Sim. Time [ns] # Atoms # Waters Charge
1 mdsim NPT 300.0 10.005 62798 17952 0

Protein Information

Tot. Residues Prot. Chain(s) Res. in Chain(s) # Atoms # Heavy Atoms Charge

562 ‘NoChainld' ict_values([562] 8798 4471 -10

3 10 13 20 23 30 33 40 43 30 33 (1] 63 70
- 4 SELLVNTKSGKVMGTRVPVLSSHISAFLGIPFAEPPVGNMRFRRPEPKKPWSGVWNASTYPNNCQQYVDE 73
i...SSA — — e

73 &0 sl 90 a3 100 105 110 115 120 125 130 135 140
- 74 QFPGFSGSEMWNPNREMSEDCLYLNIWVPSPRPKSTTVMVWIYGGGFYSGSSTLDVYNGKYLAYTEEVVL 143
- SSA 3 E— e — I ——

145 150 135 160 165 170 175 180 185 190 195 200 205 210
- 144 VSLSYRVGAFGFLALHGSQEAPGNVGLLDQRMALQWVHDNIQFFGGDPKTVTIFGESAGGASVGMHILSP 213
R SSA = S - e e — - T ——

213 220 225 230 235 240 2435 250 233 260 263 270 275 280
- 214 GSRDLFRRAILQSGSPNCPWASVSVAEGRRRAVELGRNLNCNLNSDEELIHCLREKKPQELIDVEWNVLP 283
R SSA > Ty T

283 2940 293 300 303 310 313 320 325 330 333 340 343 330
- 284 FDSIFRFSFVPVIDGEFFPTSLESMLNSGNFKKTQILLGVNKDEGSFFLLYGAPGFSKDSESKISREDFM 353
- SSA I > — T s |

333 EL1Y 363 370 373 380 383 380 395 400 403 410 413 420
- 354 SGVKLSVPHANDLGLDAVTLQYTDWMDDNNGIKNRDGLDDIVGDHNVICPLMHFVNKYTKFGNGTYLYFF 423
- SSA S I ——

425 430 435 440 445 450 455 460 465 470 475 480 485 490
- 424 NHRASNLVWPEWMGVIHGYEIEFVFGLPLVKELNYTAEEEALSRRIMHYWATFAKTGNPNEPHSQESKWP 493
I SSA T e

495 500 505 510 515 520 525 530 535 540 545 550 555 560
- 494 563
......... SSA ——— — I —— T
- 564 HH 565
--------- SSA -

Ligand Information

SMILES CN(C)C(=0)Oc(cccl)ccl[N+](C)(C)C
PDB Name 'UNK"
—N*
Num. of Atoms 35 (total) 16 (heavy) /
Atomic Mass 223.297 au
Charge +1
Mol. Formula C12H19N202 O O
Num. of Fragments 5

Num. of Rot. Bonds 4 / \

CoustertonitSatt Reformatieied 01-26-2022 20:21 57 Page 1 of 11




Type Num. Concentration [mM] Total Charge

Na 59 59.755 +59
Cl 50 50.640 -50

Schrodinger Inc. Report generated 01-26-2022 20:21 58 Page 2 of 11
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site. 'Lig fit Lig' shows the RMSD of a ligand that is aligned and
measured just on its reference conformation. This RMSD value measures the internal fluctuations of the
ligand atoms.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom 1 in the reference at time t o and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of 2120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 111, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.
Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can alll
hydrogen-bond to a single H-bond acceptor.
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar

plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the
conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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Ligand Information

COc(c(c1)O)cc(c12)CCINH2+][C@H]2Cc3cc(c(0)ce3)Oc(cd)c(0OC)cc(ca5)CC
SMILES NH2+][C@H]5Cc6ccc(O)ccb
|

PDB Name UNK = /O

Num. of Atoms 80 (total) 42 (heavy) H2N* e
OH

e

Atomic Mass 570.692 au OH

Charge +2 |
HO X

Mol. Formula C34H38N206 o)

NH,*
Num. of Fragments 3

Num. of Rot. Bonds 11
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Counter lon/Salt Information

Type Num. Concentration [mM] Total Charge

Na 58 58.736 +58
Cl 50 50.634 -50
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom 1 in the reference at time t rof and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of =120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 115, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H:--A—X).
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.

Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a
single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can all
hydrogen-bond to a single H-bond acceptor.
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar
plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the
conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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Protein Information
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Ligand Information

SMILES COc1c(OC)cc(CCINH2+][C@H]2C3)c2c1C34C=CC(=0)C=C4
PDB Name 'UNK"

Num. of Atoms 42 (total) 22 (heavy)

Atomic Mass 298.365 au

Charge +1

Mol. Formula C18H20NO3

Num. of Fragments 1

Num. of Rot. Bonds 2
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Type Num. Concentration [mM] Total Charge

Na 59 59.765 +59
Cl 50 50.649 -50
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom 1 in the reference at time t rof and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of =120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 115, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H:--A—X).
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.
Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can all
hydrogen-bond to a single H-bond acceptor.
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar
plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the
conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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Ligand Information

SMILES COc1c(OC)cee(c12)cc3c4c(CCn+]3c2)cc(OC)c(c4)0C
P
PDB Name "UNK’ 0
Num. of Atoms 48 (total) 26 (heavy) O
TSy
Atomic Mass 352.414 au
Charge +1 X
Mol. Formula C21H22NO4 +
Num. of Fragments 1
(@)

Num. of Rot. Bonds 4

/

Counter lon/Salt Information
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Type Num. Concentration [mM] Total Charge

Na 59 59.762 +59
Cl 50 50.646 -50
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom 1 in the reference at time t rof and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of =120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 115, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H:--A—X).
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Protein-Ligand Contacts (cont.)
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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Ligand-Protein Contacts
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.
Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can all
hydrogen-bond to a single H-bond acceptor.
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Ligand Torsion Profile
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar
plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the
conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand Properties
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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MD Simulation Report on AChE - 5-N-Methylmaytenine

Simulation Details Interactions

Jobname: md_job_6H12_4-dock-1
Entry title: 4-dock-1

CPU # Job Type Ensemble Temp. [K] Sim. Time [ns] # Atoms # Waters Charge
1 mdsim NPT 300.0 10.005 62876 17968 0

Protein Information

Tot. Residues Prot. Chain(s) Res. in Chain(s) # Atoms # Heavy Atoms Charge

562 ‘NoChainld' ict_values([562] 8798 4471 -10
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Ligand Information

SMILES clcccecl1\C=C\C(=O)NCCCC[N@H+](C)CCCNC(=0)/C=C/c2ccccc2
PDB Name 'UNK"

Num. of Atoms 65 (total) 31 (heavy)

Atomic Mass 420.580 au . 7
Charge +1 Z A T T 7
Mol. Formula C26H34N302 3 I "

Num. of Fragments 9

Num. of Rot. Bonds 15

Counter lon/Salt Information

Type Num. Concentration [mM] Total Charge

Na 59 59.702 +59
Cl 50 50.595 -50
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Protein-Ligand RMSD
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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Protein RMSF
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein Secondary Structure
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Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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5-N-Methylmaitenine Ligand RMSF

30

2|9’” “3|1 ﬁ
|
28 26_ _24_ 21 _19_ 17 3 5 7 10, 12
077 a5 Y27 o7 g ST T N N ST Y
I | I |
23 1 16\15,/14
3
—
"1-._,:'
E -]
L
=2 1-
D T T T | T T T T T T | T T T T T T T T T 1 | T T T | T T T T I
— ™ m =t un w ~ 00O O [} e ~J (an] | wm WO M~ &d o O — ™~ (an) <t LM O - (}.J ©h o —
r—i — — = — - — — i (| (] ™~ (] ™~ ™~ ™~ ™ ™ ™~ m m

_:lt Ligand on Protein

The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom 1 in the reference at time t rof and r'is the
position of atom i at time t after superposition on the reference frame.
Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein-Ligand Contacts
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of =120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 115, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H:--A—X).
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Protein-Ligand Contacts (cont.)
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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Ligand-Protein Contacts
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.
Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can all
hydrogen-bond to a single H-bond acceptor.
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Ligand Torsion Profile
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Ligand Torsion Profile (cont.)
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar

plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the

conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand Properties
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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MD Simulation Report on AChE - N-trans-Feruloyltyramine

Simulation Details Interactions

Jobname: md_job_6H12_5-vina_1
Entry title: 5-dock-1-rec

CPU # Job Type Ensemble Temp. [K] Sim. Time [ns] # Atoms # Waters Charge
1 mdsim NPT 300.0 10.005 62851 17967 0

Protein Information

Tot. Residues Prot. Chain(s) Res. in Chain(s) # Atoms # Heavy Atoms Charge
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Ligand Information

SMILES COc(ccl)c(0)cc1\C=C\C(=0O)NCCc2ccc(O)cc2

PDB Name 'UNK' HO

Num. of Atoms 42 (total) 23 (heavy) 0

Atomic Mass 313.356 au

Charge 0 N s
Mol. Formula C18H19NO4 H

Num. of Fragments 4 O/

Num. of Rot. Bonds 9

Counter lon/Salt Information

Type Num. Concentration [mM] Total Charge

Na 60 60.717 +60
Cl 50 50.598 -50
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.

Schrodinger Inc. Report generated 01-14-2022 14:43 115 Page 3 of 10



SCHRODINGER.

Protein Secondary Structure

% Helix % Strand % Total SSE
28.93 13.26 42.19

100 -
L

g 75 -
o

S~ 50 -
n

Q 254
o

0 -]

0 100 200 300 400 500

Residue Index
Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom | in the reference at time t rof and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of =120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 115, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H:--A—X).
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.
Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can all
hydrogen-bond to a single H-bond acceptor.
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar
plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the
conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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Simulation Details

Jobname: md_BChE_NEO_XXX
Entry title: 6EP4 - preprocessed NEO_from_MD - preprocessed NEO_from_LigPrep - preprocessed

CPU # Job Type Ensemble Temp. [K] Sim. Time [ns] # Atoms # Waters Charge
1 mdsim NPT 300.0 10.006 48097 13242 0

Protein Information

Tot. Residues Prot. Chain(s) Res. in Chain(s) # Atoms # Heavy Atoms Charge

523 Al ict_values([523] 8258 4171 +4

3 10 15 20 23 30 33 40 43 30 33 &0 63 70
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I SSA e B E—— e — > >

75 &0 83 a0 93 100 105 110 115 120 125 130 135
- a 73 FPGFHGSEMWNPNTDLSEDCLYLNVWIPAPKPKNATVLIWIYGGGFQTGTSSLHVYDGKFLARVERVIVV 142
I SSA 5 o I > T ——

145 150 155 1a60 1635 170 175 180 1835 130 195 200 205
- a 143 SMNYRVGALGFLALPGNPEAPGNMGLFDQQLALQWVQKNIAAFGGNPKSVTLFGESAGAASVSLHLLSPG 212
R SSA = - [ —

215 220 225 230 235 240 245 230 235 260 265 270 275
- a 213 SHSLFTRAILQSGSFNAPWAVTSLYEARNRTLNLAKLTGCSRENETEIIKCLRNKDPQEILLNEAFVVPY 282
- SSA — e L Iy —————— I —————

2835 230 293 300 303 310 313 320 323 330 333 340 343
- a 283 GTPLSVNFGPTVDGDFLTDMPDILLELGQFKKTQILVGVNKDEGTAFLVYGAPGFSKDNNSIITRREFQE 352
‘. SSA G I— —- T

3335 360 363 370 373 383 390 393 400 403 410 413 420
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- SSA S S —— i
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- a 427 KLPWPEWMGVMHGYEIE 196
I SSA T e
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- a 497 EQKYLTLNTESTRIMTKLRAQQCRFWTSFFPKV 529
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Ligand Information

SMILES CN(C)C(=0)Oc(nl)ccccl[N+](C)(C)C
PDB Name 'UNK' \
Num. of Atoms 34 (total) 16 (heavy) O
Atomic Mass 224.285 au
Charge +1 \ = P
Mol. Formula C11H18N302 N O N N*
Num. of Fragments 5 / \
Num. of Rot. Bonds 4

Counter lon/Salt Information

Type Num. Concentration [mM] Total Charge

Cl 42 57.668 -42
Na 37 50.803 +37
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

-
RMSF; = lTZ(I’,'(t)) - ri(tref))z
t=1

where T is the trajectory time over which the RMSF is calculated, te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom’i in the reference at time tref, and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of 2120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 111, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Schrodinger Inc. Report generated 05-09-2022 23:04 128 Page 6 of 10



SCHRODINGER.

Protein-Ligand Contacts (cont.)

Total contacts

ASP_70 -
TRP_82 -
GLY 116 -
GLY 117
THR_120 -
GLU_197 -

SER_198 -

\%
N

ALA 199 -

TRP_231 -

W

PRO_285 -

LEU_286 -

N
$1023U0D JO #

SER 287 -

=

VAL_288 -
PHE_329 - 0
TYR 332 -
PHE_398 -
HIS_438 -

TYR_440 -

0 2 4 6 8 10
Time (nsec)

A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.
Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can alll
hydrogen-bond to a single H-bond acceptor.
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar
plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the
conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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MD Simulation Report on BChE - Lindoldhamine Isomer
Simulation Details Interactions

Jobname: md_job_6EP4 1 dock-1
Entry title: 6EP4_1_dock_1

CPU # Job Type Ensemble Temp. [K] Sim. Time [ns] # Atoms # Waters Charge
1 mdsim NPT 300.0 10.005 50973 14166 0

Protein Information

Tot. Residues Prot. Chain(s) Res. in Chain(s) # Atoms # Heavy Atoms Charge
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Ligand Information

COc(c(c1)O)cc(c12)CCINH2+][C@H]2Cc3cc(c(O)ce3)Oc(cd)c(OC)cc(ca5)CCl

SMILES NH2+][C@H]5Cc6cec(O)cch
PDB Name 'UNK' O
Num. of Atoms 80 (total) 42 (heavy) H2N*
Y OH

Atomic Mass 570.692 au : OH
Charge +2

HO :
Mol. Formula C34H38N206 o 5

NH*

Num. of Fragments 3

Num. of Rot. Bonds 11

Counter lon/Salt Information
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Type Num. Concentration [mM] Total Charge

Cl 43 55.190 -43
Na 39 50.056 +39
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Protein-Ligand RMSD
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

un
o -
o

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein Secondary Structure

% Helix % Strand % Total SSE
28.64 13.79 42 .43

100
L

& 75

X 50
n

Q 25
o

0

0 100 200 300 400 500

Residue Index
Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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RMSF of Lindholdamine Isomer Ligand
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom 1 in the reference at time t rof and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.

Schrodinger Inc. Report generated 01-13-2022 17:39 138 Page 6 of 12



SCHRODINGER.

Protein-Ligand Contacts
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of =120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 115, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H:--A—X).
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Protein-Ligand Contacts (cont.)
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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Ligand-Protein Contacts
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.
Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can alll
hydrogen-bond to a single H-bond acceptor.
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Ligand Torsion Profile
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Ligand Torsion Profile (cont.)
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar
plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the
conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand Properties
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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MD Simulation Report on BChE - Stepharine Interactions

Simulation Details

Jobname: md_job_6EP4 2 dock-1
Entry title: 6EP4_2_dock_1

CPU # Job Type Ensemble Temp. [K] Sim. Time [ns] # Atoms # Waters Charge
1 mdsim NPT 300.0 10.005 50997 14187 0

Protein Information

Tot. Residues Prot. Chain(s) Res. in Chain(s) # Atoms # Heavy Atoms Charge
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Ligand Information

SMILES COclc(OC)cc(CCINH2+][C@H]2C3)c2c1C34C=CC(=0)C=C4
O

PDB Name 'UNK'

Num. of Atoms 42 (total) 22 (heavy)

Atomic Mass 298.365 au

Charge +1

Mol. Formula C18H20NO3

Num. of Fragments 1

Num. of Rot. Bonds 2

Counter lon/Salt Information

Type Num. Concentration [mM] Total Charge
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Cl 42 53.826 -42
Na 39 49.982 +39
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein Secondary Structure
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Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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Stepharine Ligand RMSF
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom 1 in the reference at time t rof and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein-Ligand Contacts
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of =120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 115, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H:--A—X).
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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Ligand-Protein Contacts
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.
Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can alll
hydrogen-bond to a single H-bond acceptor.
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Ligand Torsion Profile
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar
plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are

express&ashia-keakmal Laoking Aldbe histepram and1t5o‘rlsion potential relationships may give insights o they 1,



conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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Report S10
MD Simulation Report on BChE - Palmatine Interactions

Simulation Details

Jobname: md_job_6EP4_3-dock-2
Entry title: 6EP4_3-dock-2

CPU # Job Type Ensemble Temp. [K] Sim. Time [ns] # Atoms # Waters Charge
1 mdsim NPT 300.0 10.005 51012 14190 0

Protein Information

Tot. Residues Prot. Chain(s) Res. in Chain(s) # Atoms # Heavy Atoms Charge

527 ‘NoChainld' ict_values([527] 8313 4203 +2
T OO | LSOk 1 IO, Lo LA 1 L1 =Ll 2= £ £
- 1 DIIIATENGKVRGMQLTVFGGTVTAFLGIPYAQPPLGRLRFKKPQSLTKWSDIWNATKYANSCCQNIDQS 70
TR SSA [ S e e S —— — >
75 B0 83 90 93 100 105 1140 115 120 125 130 135
- 71 FPGFHGSEMWNPNTDLSEDCLYLNVWIPAPKPKNATVLIWIYGGGFQTGTSSLHVYDGKFLARVERVIVV 140
p— SSA e > > E— I —
1435 150 155 160 165 170 175 180 1835 130 195 200 205
- 141 SMNYRVGALGFLALPGNPEAPGNMGLFDQQLALQWVQKNIAAFGGNPKSVTLFGESAGAASVSLHLLSPG 210
f...SSA = S — B r———0 S
215 220 223 230 233 240 245 250 253 260 263 270 273
- 211 SHSLFTRAILQSGSFNAPWAVTSLYEARNRTLNLAKLTGCSRENETEIIKCLRNKDPQEILLNEAFVVPY 280
o SSA _— 5% =5
283 290 293 300 303 310 313 320 323 330 333 340 343
- 281 GTPLSVNFGPTVDGDFLTDMPDILLELGQFKKTQILVGVNKDEGTAFLVYGAPGFSKDNNSIITRKEFQE 350
‘... SSA R E— T
353 360 363 370 373 380 383 390 393 400 405 410 415
- 351 GLKIFFPGVSEFGKESILFHYTDWVDDQRPENYREALGDVVGDYNFICPALEFTKKFSEWGNNAFFYYFE 420
i...SSA — e —————[——
- 421
......... SSA
- 491
e SR

Ligand Information

SMILES COclc(OC)ccece(cl2)cc3cdc(CCn+]3c2)cc(OC)c(c4)0C
P
PDB Name 'UNK’ 0
Num. of Atoms 48 (total) 26 (hea O
(total) 26 (heavy) ~
Atomic Mass 352.414 au
Charge +1 X
Mol. Formula C21H22N0O4 *
Num. of Fragments 1
(@)
Num. of Rot. Bonds 4 e

Counter lon/Salt Information

Type Num. Concentration [mM] Total Charge
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein Secondary Structure
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Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom 1 in the reference at time t rof and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of =120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 115, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H:--A—X).
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.

Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can all
hydrogen-bond to a single H-bond acceptor.
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar
plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the
conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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MD Simulation Report on BChE - 5-N-Methylmaytenine

Simulation Details Interactions

Jobname: md_job_6EP4_4-dock-1
Entry title: 6EP4_4-dock-1

CPU # Job Type Ensemble Temp. [K] Sim. Time [ns] # Atoms # Waters Charge
1 mdsim NPT 300.0 10.005 51011 14184 0

Protein Information

Tot. Residues Prot. Chain(s) Res. in Chain(s) # Atoms # Heavy Atoms Charge

527 ‘NoChainld' ict_values([527] 8313 4203 +2
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TR SSA [ S e e S —— — >
75 B0 83 90 93 100 105 1140 115 120 125 130 135
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p— SSA - R > > E— I —
1435 150 155 160 165 170 175 180 1835 130 195 200 205
- 141 SMNYRVGALGFLALPGNPEAPGNMGLFDQQLALQWVQKNIAAFGGNPKSVTLFGESAGAASVSLHLLSPG 210
i SSA = = D e e—— .
215 220 223 230 233 240 245 250 253 260 263 270 273
- 211 SHSLFTRAILQSGSFNAPWAVTSLYEARNRTLNLAKLTGCSRENETEIIKCLRNEDPQEILLNEAFVVPY 280
o SSA _— 5% =5
283 290 293 300 303 310 313 320 323 330 333 340 343
- 281 GTPLSVNFGPTVDGDFLTDMPDILLELGQFKKTQILVGVNKDEGTAFLVYGAPGFSKDNNSIITRKEFQE 350
S SSA T ——— ] = |
353 360 363 370 373 380 383 390 393 400 405 410 415
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e SSA O — ) —————— " —
435 440 445 450 455 460 465 470 475
_ 21 e o
......... SSA
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- 491 FKSTEQKYLTLNTESTRIMTKLRAQQCRFWTSFEFPKV 527
i SSA — e e Ce—
Ligand Information
SMILES clcceecl\C=C\C(=O)NCCCC[N@H+](C)CCCNC(=0)/C=C/c2ccccc2
PDB Name 'UNK'
Num. of Atoms 65 (total) 31 (heavy)
Atomic Mass 420.580 au a 7
Charge +1 A G . T T
H
Mol. Formula C26H34N302 5 I
Num. of Fragments 9

Num. of Rot. Bonds 15

Counter lon/Salt Information

Type Num. Concentration [mM] Total Charge

Cl 42 53.838 -42
Na 39 49.992 +39
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
1
RMSD, = \| 7 > _(ri(t) = ri{trer))?
i=1
where N is the number of atoms in the atom selection; te is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom 1 in the reference at time t rof and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of =120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 115, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H:--A—X).
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.
Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can all
hydrogen-bond to a single H-bond acceptor.
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar
plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the
conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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Ligand Information
SMILES COc(ccl)c(O)ccl\C=C\C(=O)NCCc2ccc(O)cc2
PDB Name 'UNK' HO
Num. of Atoms 42 (total) 23 (heavy) 0o
Atomic Mass 313.356 au
OH
Charge 0 N Z
Mol. Formula C18H19NO4 H
Num. of Fragments 4 -~

Num. of Rot. Bonds 9

Counter lon/Salt Information

Type Num. Concentration [mM] Total Charge

Cl 41 52.523 -41
Na 39 49.961 +39
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The Root Mean Square Deviation (RMSD) is used to measure the average change in displacement of a
selection of atoms for a particular frame with respect to a reference frame. It is calculated for all frames in the
trajectory. The RMSD for frame x is:

N
RMSD, = %;(r;(tx)) — ter))?

where N is the number of atoms in the atom selection; t__ is the reference time, (typically the first frame is
used as the reference and it is regarded as time t=0); anc] r' is the position of the selected atoms in frame x
after superimposing on the reference frame, where frame x is recorded at time L. The procedure is repeated
for every frame in the simulation trajectory.

Protein RMSD: The above plot shows the RMSD evolution of a protein (left Y-axis). All protein frames are first
aligned on the reference frame backbone, and then the RMSD is calculated based on the atom selection.
Monitoring the RMSD of the protein can give insights into its structural conformation throughout the
simulation. RMSD analysis can indicate if the simulation has equilibrated — its fluctuations towards the end of
the simulation are around some thermal average structure. Changes of the order of 1-3 A are perfectly
acceptable for small, globular proteins. Changes much larger than that, however, indicate that the protein is
undergoing a large conformational change during the simulation. It is also important that your simulation
converges — the RMSD values stabilize around a fixed value. If the RMSD of the protein is still increasing or
decreasing on average at the end of the simulation, then your system has not equilibrated, and your
simulation may not be long enough for rigorous analysis.

Ligand RMSD: Ligand RMSD (right Y-axis) indicates how stable the ligand is with respect to the protein and
its binding pocket. In the above plot, 'Lig fit Prot' shows the RMSD of a ligand when the protein-ligand complex
is first aligned on the protein backbone of the reference and then the RMSD of the ligand heavy atoms is
measured. If the values observed are significantly larger than the RMSD of the protein, then it is likely that the
ligand has diffused away from its initial binding site.
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The Root Mean Square Fluctuation (RMSF) is useful for characterizing local changes along the protein chain.
The RMSF for residue i is:

:
RMSF, = lTZ < (1(0) = r{ten)? >

where T is the trajectory time over which the RMSF is calculated, te is the reference time, r is the position of
residue i; r' is the position of atoms in residue i after superposition on the reference, and the' angle brackets
indicate that the average of the square distance is taken over the selection of atoms in the residue.

On this plot, peaks indicate areas of the protein that fluctuate the most during the simulation. Typically you will
observe that the tails (N- and C-terminal) fluctuate more than any other part of the protein. Secondary
structure elements like alpha helices and beta strands are usually more rigid than the unstructured part of the
protein, and thus fluctuate less than the loop regions.
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Protein secondary structure elements (SSE) like alpha-helices and beta-strands are monitored throughout the
simulation. The plot above reports SSE distribution by residue index throughout the protein structure. The plot
below summarizes the SSE composition for each trajectory frame over the course of the simulation, and the
plot at the bottom monitors each residue and its SSE assianment over time.
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The Ligand Root Mean Square Fluctuation (L-RMSF) is useful for characterizing changes in the ligand atom
positions. The RMSF for atom i is:

RMSF, = T Z tref))

where T is the trajectory time over which the RMSF is calculated te is the reference time (usually for the first
frame, and is regarded as the zero of time); r is the position of atom | in the reference at time t rof and r'is the
position of atom i at time t after superposition on the reference frame.

Ligand RMSF shows the ligand's fluctuations broken down by atom, corresponding to the 2D structure in the
top panel. The ligand RMSF may give you insights on how ligand fragments interact with the protein and their
entropic role in the binding event. In the bottom panel, the 'Fit Ligand on Protein' line shows the ligand
fluctuations, with respect to the protein. The protein-ligand complex is first aligned on the protein backbone
and then the ligand RMSF is measured on the ligand heavy atoms.
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Protein interactions with the ligand can be monitored throughout the simulation. These interactions can be
categorized by type and summarized, as shown in the plot above. Protein-ligand interactions (or ‘contacts’)
are categorized into four types: Hydrogen Bonds, Hydrophobic, lonic and Water Bridges. Each interaction
type contains more specific subtypes, which can be explored through the 'Simulation Interactions Diagram’
panel. The stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7
suggests that 70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible
as some protein residue may make multiple contacts of same subtype with the ligand.

Hydrogen Bonds: (H-bonds) play a significant role in ligand binding. Consideration of hydrogen-bonding properties in
drug design is important because of their strong influence on drug specificity, metabolization and adsorption. Hydrogen
bonds between a protein and a ligand can be further broken down into four subtypes: backbone acceptor; backbone
donor; side-chain acceptor; side-chain donor.

The current geometric criteria for protein-ligand H-bond is: distance of 2.5 A between the donor and acceptor atoms
(D—H---A); a donor angle of =120° between the donor-hydrogen-acceptor atoms (D—H---A); and an acceptor angle of
>90° between the hydrogen-acceptor-bonded_atom atoms (H---A—X).

Hydrophobic contacts: fall into three subtypes: t=Cation; 115, and Other, non-specific interactions. Generally these type
of interactions involve a hydrophobic amino acid and an aromatic or aliphatic group on the ligand, but we have extended
this category to also include t-Cation interactions.

The current geometric criteria for hydrophobic interactions is as follows: T-Cation — Aromatic and charged groups within
4.5 A; Tert— Two aromatic groups stacked face-to-face or face-to-edge; Other — A non-specific hydrophobic sidechain
within 3.6 A of a ligand's aromatic or aliphatic carbons.

lonic interactions: or polar interactions, are between two oppositely charged atoms that are within 3.7 A of each other
and do not involve a hydrogen bond. We also monitor Protein-Metal-Ligand interactions, which are defined by a metal ion
coordinated within 3.4 A of protein's and ligand's heavy atoms (except carbon). All ionic interactions are broken down
into two subtypes: those mediated by a protein backbone or side chains.

Water Bridges: are hydrogen-bonded protein-ligand interactions mediated by a water molecule. The hydrogen-bond
geometry is slightly relaxed from the standard H-bond definition.

The current geometric criteria for a protein-water or water-ligand H-bond are: a distance of 2.8 A between the donor and
acceptor atoms (D—H---A); a donor angle of 2110° between the donor-hydrogen-acceptor atoms (D—H---A); and an
acceptor angle of 290° between the hydrogen-acceptor-bonded_atom atoms (H:--A—X).
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A timeline representation of the interactions and contacts (H-bonds, Hydrophaobic, lonic, Water bridges)
summarized in the previous page. The top panel shows the total number of specific contacts the protein
makes with the ligand over the course of the trajectory. The bottom panel shows which residues interact with
the ligand in each trajectory frame. Some residues make more than one specific contact with the ligand, which
is represented by a darker shade of orange, according to the scale to the right of the plot.
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A schematic of detailed ligand atom interactions with the protein residues. Interactions that occur more than
30.0% of the simulation time in the selected trajectory ( 0.00 through 10.00 nsec), are shown.
Note: it is possible to have interactions with >100% as some residues may have multiple interactions of a

single type with the same ligand atom. For example, the ARG side chain has four H-bond donors that can alll
hydrogen-bond to a single H-bond acceptor.
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The ligand torsions plot summarizes the conformational evolution of every rotatable bond (RB) in the ligand
throughout the simulation trajectory ( 0.00 through 10.00 nsec). The top panel shows the 2d schematic of a
ligand with color-coded rotatable bonds. Each rotatable bond torsion is accompanied by a dial plot and bar
plots of the same color.

Dial (or radial) plots describe the conformation of the torsion throughout the course of the simulation. The
beginning of the simulation is in the center of the radial plot and the time evolution is plotted radially outwards.

The bar plots summarize the data on the dial plots, by showing the probability density of the torsion. If
torsional potential information is available, the plot also shows the potential of the rotatable bond (by summing
the potential of the related torsions). The values of the potential are on the left Y-axis of the chart, and are
expressed in kcal/mol. Looking at the histogram and torsion potential relationships may give insights into the
conformational strain the ligand undergoes to maintain a protein-bound conformation.
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Ligand RMSD: Root mean square deviation of a ligand with respect to the reference conformation (typically
the first frame is used as the reference and it is regarded as time t=0).

Radius of Gyration (rGyr): Measures the 'extendedness' of a ligand, and is equivalent to its principal moment
of inertia.

Intramolecular Hydrogen Bonds (intraHB): Number of internal hydrogen bonds (HB) within a ligand molecule.

Molecular Surface Area (MolSA): Molecular surface calculation with 1.4 A probe radius. This value is
equivalent to a van der Waals surface area.

Solvent Accessible Surface Area (SASA): Surface area of a molecule accessible by a water molecule.

Polar Surface Area (PSA): Solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms.
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