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Images
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1. Text S1: Supplemental Methods21

1.1. Image processing22

1.1.1. Downscaling23

The raw 2048 × 2044 images are encoded in 2-byte (16-bit) unsigned integers.24

Since lower resolution images are good enough for cell density estimation, the 0.6525

micros/pixel images were 2× downsampled to 1.30 micros/pixel by LANCZOS resam-26

pling algorithm [1]. This also reduces storage memory requirements. The LANCZOS27

resampling uses a convolution kernel to interpolate the pixels of the input image. The28

kernel function is defined as:29

k(x) =

{
sinc(x) sinc( x

a ) −a < x < a
0 otherwise

(1)

Here, x is the position relative to the kernel center and a is the kernel size. We used30

the default settings in python-pillow [2]. The LANCZOS resampling reduces aliasing31

while maintaining the sharpness of downsampled images [1].32

1.1.2. Normalization33

To make the images compatible with our model, we normalized the image intensity34

to [−1, 1] float32 values. For the tdTomato fluorescent images, we applied histogram35

equalization (HE) [3] to visualize the detailed information, such as the cell streams36
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between different aggregates. The new intensity Inew is calculated by the following37

equation:38

Inew =
Iraw − Imin
Imax − Imin

× 2− 1 (2)

where Iraw is the raw image intensity. Imax and Imin are the maximum and minimum39

respectively of the raw image intensity. Due to the differences in the light source, some40

parts of the images may be brighter than the other parts. To reduce the imbalance in the41

light condition, we applied contrast limited adaptive histogram equalization (CLAHE).42

The CLAHE utilizes the pixel intensity distribution from a neighborhood region, which43

is defined by a tile grid size, and clips the histogram at a predefined value, called the44

clip limit. We set the clip limit equal to 2, and the tile grid size to 16 by 16 pixels.45

1.1.3. Augmentation46

We have collected 9 movies of 5× 109 cells/mL, 3 movies of 2.5× 109 cells/mL and47

2 movies of 1× 1010 cells/mL each containing 1440 or more frames (24hr of images taken48

every minute). For the training set, we picked images in 7 randomly selected movies of49

5× 109 cells/mL and 3 randomly selected movies of 2.5× 109 cells/mL at the interval of50

10 minutes. We then manually removed the images captured when the light bulb was51

off. Images from one of the 5× 109 cells/mL movies form the cross-validation set, and52

images from the other 2 movies at the same density are annotated as the test set. The53

model is trained on the training set and the model performance is evaluated on all the54

images in the 12 movies. The training set should be large enough to contain images of all55

possible strains, so that our model can learn to synthesize tdTomato fluorescent images56

from different experimental phase-contrast images. To increase the variety of images in57

the training set, we randomly selected positions on the image, and cropped the images58

to 256×256 pixels, which is large enough to contain at least one aggregate on average in59

the image, and small enough to be processed in our model. Then we randomly rotated60

the downscaled input and ground truth images together by 0◦, 90◦, 180◦ or 270◦. Finally,61

we randomly mirrored 50% of the images.62

Data augmentation is important for such tasks with limited datasets. For a 1024×102463

pixel image, there are as many as 4(crop)× 4(crop)× 4(rotate)× 2( f lip) = 128 differ-64

ent small 256×256 pixel images. These images represent the same time frame of an65

experiment but have aggregates distributed differently. Without data augmentation,66

it is possible to see an aggregate existing on the same corner across different images.67

Our model may overfit and treat that fixed aggregate as an underlying feature of the68

fluorescent image. The data augmentation leads to variations in aggregate distribution69

and helps our model learn the image transformation regardless of the image orientation70

and distribution of aggregates.71

1.1.4. Image Segmentation72

The aggregates are sized between a lower bound and an upper bound. To get the73

best lower bound and upper bound for segmentation, we started from the aggregate74

size range determined in [4], where the lower and upper bounds are 7 and 1000 pixels75

in our image. However, it takes longer to segment with such a large upper bound. We76

have tested the aggregate segmentation with smaller upper bounds and found that with77

200 pixels as the upper bound, the result does not change too much (Figure S1), but it is78

about 45 times faster. Therefore, we picked 7 and 200 as the lower and upper bounds.79

1.2. Network Architectures80

In this section, we will first introduce the pix2pixHD model, and then the modifica-81

tion in pix2pixHD-HE. Finally, we will discuss the training details.82
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D E

200 μμ

F
Figure S1. Aggregates segmented at the 800 minute, the real fluorescent images are shown in
Figure 6C, S9C, S10C. (A)1× 1010 cells/mL, upper bound=200, execution time: 1.3s; (B)5× 109

cells/mL, upper bound=200, execution time: 1.3s; (C)2.5 × 109 cells/mL, upper bound=200,
execution time: 1.4s; (D)1× 1010 cells/mL, upper bound=1000, execution time: 61.5s; (E)5× 109

cells/mL, upper bound=1000, execution time: 61.9s; (F)2.5× 109 cells/mL, upper bound=1000,
execution time: 61.4s;

Figure S2. The network architecture of pix2pixHD generator. Each rectangular block
represents a 3-dimensional array. The lengths and widths of the arrays are annotated
on the left. The depths of the arrays are annotated on the top. The blue dots represent
several 2-layer residual building blocks. The numbers of blocks are annotated above.

1.2.1. Pix2pixHD Generator83

We base our method on the pix2pixHD [5] (Figure S2) model, which is a conditional84

GAN designed for high-resolution image transformation, to process our images. The85

model has two levels of generators, G1 and G2. The architectures are shown as follow:86

G1: C64–C128–C256–C256–C512–R512–R512–R512–R512–R512–R512–R512–R512–87

R512–D256–D128–D64–C188

G2: C32–C64–(+G1@D64)–R64–R64–R64–D32–C189

Here Ck denote a Convolution-BatchNorm-ReLU layer with k filters (in the last layers90
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Figure S3. The network architecture of multi-scale discriminators. Each rectangular block repre-
sents a 3-dimensional array. The lengths and widths of the arrays are annotated on the left. The
depths of the arrays are annotated as superscripts. Each arrow represents an operation step. The
double-headed arrow represents the MSE calculation.

of G1 and G2, the activation function is changed to tanh). Rk denotes a Convolution-91

BatchNorm-ReLU-50%Dropout-Convolution-BatchNorm-Addition residue block[6] with92

k filters. Dk denotes a Deconvolution-BatchNorm-ReLU layer with k filters. Element-93

wise addition is denoted as +, and G1@D64 stands for D64 layer of G1.94

1.2.2. Multi-scale Discriminators95

We used multi-scale discriminators (D0, D1, D2) to determine whether an image96

is a real microscopy image (Figure S3). These discriminators follow identical 6-layer97

convolution network structure[5]:98

C64–C128–C256–C512–C512–C199

The activation function is LeakyReLU with 0.2 negative slope. There is no normal-100

ization on the first and last layers. There is no activation function on the last layer.101

The D0, D1, and D2 were trained to differentiate real and synthesized tdTomato102

images at 3 different scales. Though taking the same input, the outputs of D0, D1, and103

D2 are 8× 8, 16× 16, and 32× 32. Thus, elements in the outputs of D0, D1, and D2104

have decreasing inspection fields. The D0 focuses on the global information, D1 pays105

more attention to the mid-level information, and D2 handles the local information. This106

architecture is compatible with profile and detail transference. During training, the phase-107

contrast image and tdTomato fluorescent image were stacked together and downscaled108

by 2× 2 and 4× 4 average polling kernels. Then the original and downscaled image109

stacks were fed into discriminators D2, D1, and D0. The GAN loss:110

min
Gi

max
D0,...,Di

i

∑
k=0
LGAN(Gi, Dk) (3)

where i = 1 for training G1, i = 2 for training G2. The objective function LGAN(Gi, Dk)111

is given by:112

LGAN(Gi, Dk) = E(p,t)[log Dk(p, t)] +Ep[log(1− Dk(p, G(p)))] (4)

where p is the phase-contrast image, t is the fluorescent image. E represents the expected113

value.114

1.2.3. Feature Matching Loss115

Our synthesized fluorescent images should have similar feature distributions as real116

fluorescent images. Therefore, we minimized the L1-norm between the discriminator117
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outputs of real image stacks and synthesized image stacks on each layer. The feature118

matching loss is:119

LFM(Gi, Dk) = E(p,t)

H

∑
j=1

1
Nj
||D(j)

k (p, t)− D(j)
k (p, Gi(p))||1, (5)

where p is the phase-contrast image, t is the fluorescent image, H is the total number of120

layers, and Ni denotes the number of elements in each layer.121

The optimization function with discriminator loss and feature matching loss:122

min
Gi

max
Dk

∑
k
LGAN(Gi, Dk) + λ ∑

k
LFM(Gi, Dk), (6)

where λ controls the weight of feature matching loss, and it has a value between 0.1 and123

1. During training, we gradually remove the loss function of G1 to avoid over-fitting on124

profile scale.125

1.2.4. Hyperparameter Optimization in Pix2pixHD-HE126

We manipulated the model to have two outputs and named it pix2pixHD-HE. The127

CLAHE output forces our model to learn profile aggregation information, while the HE128

output assists our model to learn detailed stream information. The pix2pixHD-HE is a129

variant of pix2pixHD, and the best branch point for the histogram equalized output is130

unreported in previous publications. To determine the best branch point, we switched131

the branch point from the second-to-last layer to the first residual block, and labeled132

them from 1 to 5 (Figure 2). We trained each model for 2000 epochs, and tested them133

on the cross-validation dataset. The performances were evaluated by MSE and SSIM in134

Tables S1,S2. In both cases, the branch point at the third to last layer(label 2, Figure 2)135

performed the best, which we use as our model structure. Using the same annotation as136

described in Appendix 1.2.1 with the bracket with subscript denotes branched outputs,137

the architectures are as follows:138

G1: C64–C128–C256–C256–C512–R512–R512–R512–R512–R512–R512–R512–R512–139

R512–D256–D128–D64(–C1)2140

G2: C32–C64–(+G1@D64)–R64–R64–R64(–D32–C1)2141

Table S1: Hyperparameter optimization, SD: spatial displacement (µm), σ: minimal stan-
dard deviation for added Gaussian noise, given as a percentage of the original intensity
scale, Difference: Subtract the metric value of the best model from the metric value of the
current model. The row of the best model used for all the figures is highlighted in bold.

MSE SSIM
Branch Point Value SD σ Difference Value SD Difference

1 0.034±0.019 7.0 9.3% -0.009±0.010 0.663±0.088 2.0 0.041±0.031
2 0.026±0.011 5.0 8.0% 0.000±0.000 0.705±0.073 1.9 0.000±0.000
3 0.027±0.012 5.1 8.2% -0.001±0.002 0.694±0.075 1.9 0.010±0.006
4 0.026±0.011 5.2 8.1% -0.001±0.003 0.693±0.064 2.0 0.012±0.017
5 0.033±0.017 6.7 9.0% -0.007±0.009 0.677±0.080 2.0 0.028±0.026

None 0.025±0.010 4.9 8.0% 0.001±0.002 0.697±0.070 2.0 0.007±0.008

1.2.5. Training Details142

All the networks were trained from scratch. We used the Adam optimizer [7] with143

a learning rate of 5× 10−5 and momentum parameters β1 = 0.5, β2 = 0.999, the other144

parameters were set to default ones in pix2pixHD. The model was trained and tested145

on an HPE XL190 server, with an Intel(R) Xeon(R) Gold 6230 CPU and 32Gb Tesla V100146

GPU. For each epoch, the model was trained on 1020 256× 256 images cropped from147

1020 1024× 1022 images, with 40 to 45 images in each batch. We first trained the G1 and148

G2 together for 500 epochs, the weight of loss for G1 decreases linearly over time. After149
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Table S2: Hyperparameter optimization after histogram equalization, SD: spatial dis-
placement (µm), σ: minimal standard deviation for added Gaussian noise, given as a
percentage of original the intensity scale, Difference: Subtract the metric value of the
best model from the metric value of the current model. The row of the best model used
for all the figures is highlighted in bold.

MSE SSIM
Branch Point Value SD σ Difference Value SD Difference

1 0.177±0.042 3.4 21.1% -0.023±0.015 0.337±0.070 2.6 0.051±0.028
2 0.154±0.034 3.0 19.6% 0.000±0.000 0.388±0.069 2.3 0.000±0.000
3 0.167±0.031 3.3 20.4% -0.012±0.007 0.364±0.059 2.4 0.024±0.015
4 0.167±0.034 3.2 20.4% -0.013±0.011 0.356±0.063 2.4 0.032±0.025
5 0.181±0.039 3.5 21.2% -0.026±0.016 0.333±0.068 2.6 0.055±0.031

None 0.162±0.032 3.1 20.1% -0.008±0.009 0.369±0.063 2.4 0.020±0.020

500 epochs, we stopped the training of G1 to avoid overfitting downscaled images and150

to save training time. The model can also process any multiple of 16×16 images, such as151

1024× 1024 or 768× 256 images.152

1.2.6. Model Building Interface153

Our models are built in .json files and processed with PyTorch [8]. To make the154

model building process simpler, we have also made a model builder interface with155

React and host it on surge (http://igoshinlab-mbuilder.surge.sh/). The website code156

is also available on GitHub (https://github.com/IgoshinLab/ModuleBuilder.git). We157

can import a model on the website and edit each layer. The right side of the webpage158

shows the building blocks. Different layer types can be selected from the drop-down list.159

The parameters of the selected layer type are specified below that. After pressing the160

"Submit" button, we can see the corresponding layer added or edited on the left. After161

we have completed building the model, we can export it locally.162

1.3. Mean Square Error and Structural Similarity Indexed Measure Analysis163

1.3.1. Spacial Displacement164

For a given initial image position (ρ, θ) in polar coordinates for a real image r and a165

generated image g, there exists a smallest radial perturbation ∆ρ, such that for all θ166

MSE(r(ρ, θ), g(ρ, θ)) ≤ MSE(r(ρ, θ), r(ρ + ∆ρ, θ)) (7)

The displacement ∆ρ shows how similar the generated images are compared to the167

cell pattern distribution. To make the calculation simpler, we took θ = 0, π
2 , π, and 3

2 π.168

Spatial displacement values for SSIM is calculated in the same fashion.169

1.3.2. Relative Standard Deviation of Gaussian Noise170

We add Gaussian noise with relative standard deviation σi to the image intensity of171

a real image r, and annotate it as G(r, 2σi). We then compare the real image to G. The172

smallest σi that makes the following equation true quantifies the difference between the173

synthesized and real images compared to added Gaussian noise.174

MSE(r, g) ≤ MSE(r, G(r, 2σi)) (8)

2. Supplemental Video Captions175

Supporting Video 1:Aggregate Segmentation176

The aggregate segmentation result of phase-contrast and fluorescent images from177

360 min to 1440 min on the test set. Frames prior to 360 min are not included, because the178

aggregates are not well-formed during that period; the period varies slightly in different179

biological replicates.180

http://igoshinlab-mbuilder.surge.sh/
https://github.com/IgoshinLab/ModuleBuilder.git
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Supporting Video 2: Model Performance181

Comparison of the real images and images synthesized by pix2pixHD and pix2pixHD-182

HE in one of the training sets.183

3. Additional Supplemental Figures184
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Figure S4. Performance evaluation across a training movie. The orange dashed lines show the time
points corresponding to E,F,G. (A, B) Subtracting MSE of pix2pixHD from MSE of pix2pixHD-HE
in a 24-hour movie; (A) normalized image; (B) Histogram equalized image; (C, D) Subtracting
SSIM of pix2pixHD from SSIM of pix2pixHD-HE in a 24-hour movie, (A) normalized image; (B)
Histogram equalized image; (E, F, G) phase-contrast image at the 500, 800, 1200 minutes in the
movie.
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Real images

A

pix2pixHD

B

pix2pixHD-HE

C

D E 200 μμF
Figure S5. Model performance at the 500 min: (A) Ground truth tdTomato fluorescent image; (B)
Synthesized fluorescent image (pix2pixHD); (C) Synthesized fluorescent image (pix2pixHD-HE);
(D) Histogram equalized ground truth tdTomato fluorescent image; (E) Histogram equalized
synthesized fluorescent image (pix2pixHD); (F) Histogram equalized synthesized fluorescent
image (pix2pixHD-HE).

Real images

A

pix2pixHD

B

pix2pixHD-HE

C

D E 200 μμF
Figure S6. Model performance at the 800 min: (A) Ground truth tdTomato fluorescent image; (B)
Synthesized fluorescent image (pix2pixHD); (C) Synthesized fluorescent image (pix2pixHD-HE);
(D) Histogram equalized ground truth tdTomato fluorescent image; (E) Histogram equalized
synthesized fluorescent image (pix2pixHD); (F) Histogram equalized synthesized fluorescent
image (pix2pixHD-HE).
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Real images

A

pix2pixHD

B

pix2pixHD-HE
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D E 200 μμF
Figure S7. Model performance at the 1200 min: (A) Ground truth tdTomato fluorescent image; (B)
Synthesized fluorescent image (pix2pixHD); (C) Synthesized fluorescent image (pix2pixHD-HE);
(D) Histogram equalized ground truth tdTomato fluorescent image; (E) Histogram equalized
synthesized fluorescent image (pix2pixHD); (F) Histogram equalized synthesized fluorescent
image (pix2pixHD-HE).

A B

C 200 μμD
Figure S8. Images at the 0 and 800 minutes with cell density 1× 1010 cells/mL: (A) phase-contrast
image at the 0 minute; (B) fluorescent image at the 0 minute (the black holes are the dead cells); (C)
phase-contrast image at the 800 min; (D) fluorescent image at the 800 min.
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Figure S9. Aggregate segmentation for images of 5× 109 cells/mL cell density: (A) The distri-
bution of distances between centroid positions. Blue: real and synthesized fluorescent images;
orange: phase-contrast and real fluorescent images; (B) The distribution of area ratios for the
matched aggregate pairs. Blue: real and synthesized fluorescent images; orange: phase-contrast
and real fluorescent images; (C) Fluorescent image at the 800 min; (D) Synthesized image at the 800
min; (E) Aggregate segmentation result at the 800 min. white: true positive, black: true negative,
yellow: false positive, red: false negative.
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Figure S10. Aggregate segmentation for images of 2.5 × 109 cells/mL cell density: (A) The
distribution of distances between centroid positions. Blue: real and synthesized fluorescent
images; orange: phase-contrast and real fluorescent images; (B) The distribution of area ratios
for the matched aggregate pairs. Blue: real and synthesized fluorescent images; orange: phase-
contrast and real fluorescent images; (C) Fluorescent image at the 800th minute; (D) Synthesized
image at the 800th minute; (E) Aggregate segmentation result at the 800th minute. white: true
positive, black: true negative, yellow: false positive, red: false negative.
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Figure S11. The cropped 504× 504 rippling images and the corresponding mean amplitudes
in Fourier space. The wavenumber k1 is shown as an orange dotted line. (A, B) phase-contrast
rippling image and the corresponding mean amplitude along the radius, k1 = 24, λk ∼ 21µm;
(C, D) fluorescent rippling image and the corresponding mean amplitude along the radius, k1 =

11, λk ∼ 46µm; (E, F) synthesized fluorescent rippling image before training and the corresponding
mean amplitude along the radius, k1 = 8, λk ∼ 63µm; (G, H) synthesized fluorescent rippling
image after training and the corresponding mean amplitude along the radius, k1 = 11, λk ∼ 46µm.
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Figure S12. The calculated wavelength in a movie. Untrained is the wavelength calculated
from the model that was only trained on the aggregation model withour training on ripple
patters.Trained is the wavelength calculated from the model further trained on ripple patterns.
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