Supplementary material to

Sustainable production of *N*-methylphenylalanine by reductive methylamination of phenylpyruvate using engineered *Corynebacterium glutamicum*

Anastasia Kerbs¹, Melanie Mindt², Lynn Schwardmann¹ and Volker F. Wendisch ^{1,*}

* Correspondence: Volker.wendisch@uni-bielefeld.de (V.W.); Tel.: +49-521-106-5611

Plasmids and	Relevant characteristics	Source
Oligonucleotides		
Plasmids		
pET-16b	Amp ^R , production of <i>N</i> -terminal 10xHis-tagged	Novagen
	proteins in <i>E. coli</i> (pBR322 oriVE.c., PT7, lacl)	
рЕТ-16b <i>-dpkA</i> ^{P262A,M141L}	Amp ^R , pET-16b expressing <i>dpkA</i> from P. <i>putida</i> KT2440 with amino	[1]
	acid exchange from proline to alanine at position 262 and	
	methionine to leucine at position 141 for protein purification	
pK19mobsacB	Km ^R ; E. coli/C. glutamicum shuttle vector for construction of	[2]
-	insertion and deletion mutants in <i>C. glutamicum</i> (pK18 oriV _{Ec} sacB	
	$lacZ\alpha)$	
pK19mobsacB-∆trpEG	pK19 <i>mobsacB</i> with a construct for deletion of <i>trpEG</i> (<i>cg3359</i> , <i>cg3360</i>)	This work
pK19mobsacB-∆ilvE	pK19 <i>mobsacB</i> with a construct for deletion of <i>ilvE</i> (<i>cg2418</i>)	This work
pK19mobsacB-∆aroT	pK19 <i>mobsacB</i> with a construct for deletion of <i>aroT</i> (<i>cg</i> 0267)	This work
pK19mobsacB-∆pyK	pK19mobsacB with a construct for deletion of pyK (cg2291)	[3]
pK19mobsacB-	pK19 <i>mobsacB</i> with a construct for deletion of Ncgl2922 and	[4]
$\Delta Ncgl2922::P_{tuf}-aroK^{mj}$	insertion of <i>aroK</i> from <i>Methanococcus jannaschii</i>	
pEKEx3	Spec ^R , <i>P</i> taclacI ^q , pBL1oriVcg, C. glutamicum/E. coli expression shuttle	[5]
	vector	
pEKEx3-pheA	Spec ^R , pEKEx3 overexpressing <i>pheA</i> ^{FBR} from <i>E. coli</i> K12	This work
pEKEx3-pheAFBR	Spec ^R , pEKEx3 overexpressing <i>pheA</i> ^{FBR} from <i>E. coli</i> K12	This work
pEKEx3-pheA ^{FBR} -	Spec ^R , pEKEx3 overexpressing <i>pheA</i> ^{FBR} from <i>E. coli</i> K12 and	This work
агоКмј	aroK from Methanococcus jannaschii	
pVWEx1	Kan ^R , <i>P</i> tuclacI ^q pHM1519 oriVc ₈ C. glutamicum/E. coli expression	[6]
*	shuttle vector	
pVWEx1-dpkA_RBS ^{opt}	Kan ^R , pVWEx1 overexpressing <i>dpkA</i> from <i>P. putida</i> KT2440 with	[7]
	start codon GTG instead of ATG and with an optimized RBS	

Table S1: Used plasmids and oligonucleotides in this work

¹ Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Germany; anastasia.kerbs@uni-bielefeld.de (A.K.), l.schwardmann@uni-bielefeld.de (L.S.)

² BU Bioscience, Wagenigen University & Research, 6700AA Wageningen, The Netherlands; melanie.mindt@wur.nl (M.M.)

pVWEx1- dpkA ^{p262AM141L}	Kan ^R , pVWEx1 overexpressing <i>dpkA</i> from <i>P. putida</i> KT2440 with amino acid exchange from proline to alanine at position 262 and mothicping to leveling at position 141	[1]
pECXT-Psyn-xylAB	Tet ^R , pECXT99A derivative for constitutive expression of <i>xylA</i> from <i>Xanthomonas campestris</i> and <i>xylB</i> from <i>C. glutamicum</i> from synthetic Psyn promoter	[8]
Oligonucleotides	Sequence (5'-3')	Function
<i>trpEG</i> UF fw	CAGGTCGACTCTAGAGGATCCGCATACTGTTGCGATGGTTG	Amplification upstream of trpEG
<i>trpEG</i> UF rv	TITTATTAGITCGCGAGAAGGGGATTCGTGCTCATGGGGC	Amplification upstream of <i>trpEG</i>
<i>trpEG</i> DF fw	GCCCCATGAGCACGAATCCCCTTCTCGCGAACTAATAAAAA AAGG	Amplification downstream of <i>trpEG</i>
<i>trpEG</i> DF rev	GAGCTCGGTACCCGGGGATCCTGCACATGCGCAATCGCAG	Amplification downstream of <i>trpEG</i>
<i>trpEG</i> g. fw	GCTGTCGGGAGTTTCCTTTG	Amplification of <i>trpEG</i>
<i>trpEG</i> g. rv	GGGACAGCAATGGTCCAAG	Amplification of <i>trpEG</i>
<i>ilvE</i> UF fw	CCTGCAGGTCGACTCTAGAGGATCCGTCGTCAAGCAAATCA GC	Amplification upstream of <i>ilvE</i>
<i>ilvE</i> UF rv	GGTTGATTTAGCCAACCAGTGGACCTGACAGATACACTAGT C	Amplification upstream of <i>ilvE</i>
<i>ilvE</i> DF fw	GACTAGTGTATCTGTCAGGTCCACTGGTTGGCTAAATCAACC	Amplification downstream of <i>ilvE</i>
<i>ilvE</i> DF rev	GAGCTCGGTACCCGGGGGATCCTTTGGTGACGCGCAAAGTG	Amplification downstream of <i>ilvE</i>
<i>ilvE</i> g.fw	CGAGCGAGCAGGACAGATTC	Amplification of <i>ilvE</i>
<i>ilvE</i> g. rv	GAATTCTTCCGTGGCAACTC	Amplification of <i>ilvE</i>
aroT UF fw	CCTGCAGGTCGACTCTAGAGGATCCCTTAGCAAGACCGGGT GAC	Amplification upstream of <i>aroT</i>
aroT UF rv	CCAAAGACTACCCAGCATTGATATCTGCTCTAATCATGATTT ACAC	Amplification upstream of <i>aroT</i>
aroT DF fw	GTAAATCATGATTAGAGCAGATATCAATGCTGGGTAGTCTTT GGCG	Amplification downstream of <i>aroT</i>
<i>aroT</i> DF rev	GATCCCCGGGTACCGAGCTCGGACGGTCAATGACACATCGT TC	Amplification downstream of <i>aroT</i>
aroT g.fw	AGAAGCCGGCATACCCGAAG	Amplification of <i>aroT</i>

aroT g.rv	TTGAGCTTGAGCGGAAATGC	Amplification of <i>aroT</i>
<i>pyk</i> ver fw	TCTTCGCTTTGTTGATGTGGGCTGAC	Verification of <i>pyk</i> deletion
<i>pyk</i> ver rev	TTCGAGGGCGGTCAACATAGAGC	Verification of <i>pyk</i> deletion
pheA fw	GCCTGCAGGTCGACTCTAGAGGAAAGGAGGCCCTTCAGATG ACATCGGAAAACCCGTTACTGG	Amplification of <i>pheA</i>
pheA rv	AACGACGGCCAGTGAATTCGAGCTCTCAGGTTGGATCAACA GGCACTACG	Amplification of <i>pheA</i>
aroK fw	GTTGATCCAACCTGACAGAGACAACAGCTCTACTAGGCAGT AATATCGAAAGGAGGTTTTTTATGGAGGGCAAAGCGTAT	Amplification of <i>aroK</i>
aroK rev	CGAGCTCGGTACCCGGGGATCTTAGTAGATTGAAGCTCCGTC G	Amplification of <i>aroK</i>
dpkA-pVW-fw	GCCAAGCTTGCATGCCTGCACAAGCGCACAAATCGAGGTCG AAAAGGA	Amplification of <i>dpkA</i>
<i>dpkA</i> -pVW-rv	GGGATCCTCTAGAGTCGACCTGCATCAGCCAAGCAGCTCTTT CA	Amplification of <i>dpkA</i>
pheA fw	GCCAAGCTTGCATGCCTGCAGAAAGGAGGCCCTTCAGATGA CATCGGAAAACCCGTTACTGG	Amplification of <i>pheA</i>
pheA rev	AACGACGGCCAGTGAATTCGAGCTCTCAGGTTGGATCAACA GGCACTACG	Amplification of <i>pheA</i>
pheA T326P fw	CACAATCTGATTATGCCCCGTCTGGAATCAC	Introduction of point mutation
pheA T326P rev	GTGATTCCAGACGGGGCATAATCAGATTGTG	Introduction of point mutation
pEC-XT99A-psyn-fw	TCAGTGAGCGAGGAAGC	Verification of pEC-XT99A transformants
pEC-XT99A-rev	TACTGCCGCCAGGCAAATTC	Verification of pEC-XT99A transformants

Figure S1: Verification of tryptophan auxotrophy of ARO10. *C. glutamicum* strain ARO10 was cultivated in minimal medium with supplementation of 0.8 mM tryptophan (circle red) or without tryptophan (circle blue) for 24 h. ARO9 was chosen as a control (square black).

After deletion of the anthranilate synthase (*trpEG*) in ARO9, the resulting strain ARO10 became auxotrophic for tryptophan, thus supplementation of the aromatic amino acid tryptophane is required (Figure S1).

Figure S3: Production of shikimate by *C. glutamicum* **ARO and MePhe strains**. The strains were grown in Duetzplates in CGXII medium containing 50% nitrogen and 20 g L⁻¹ glucose as sole carbon source for 72 h. Means and standard deviations of technical triplicates are shown.

Figure S4: Growth of *C. glutamicum* **strain NMePhe5*** **with different culture media compositions.** StrainNMePhe5* was grown for 72h in Duetz-plates using CGXII media with the indicated concentrations of alkylamine donor (0.1 M and 0.35 M MMA), carbon source (20 g L⁻¹ and 40 g L⁻¹ glucose), and nitrogen source (10%, 50% and 100% of the concentrations of the nitrogen sources urea and ammonium sulfate). Means and standard deviations from triplicate cultures are depicted.

Figure S 5 Production of NMePhe (blue), NMeAla (orange), phenylpyruvate (cyan), and shikimate (light brown) by C. glutamicum strain NMePhe5* with different culture media compositions. Strain NMePhe5* was grown using CGXII media with the indicated concentrations of alkylamine donor (0.1 M and 0.35 M MMA), carbon source (20 g L⁻¹ and 40 g L⁻¹ glucose), and nitrogen source (10%, 50% and 100% of the concentrations of the nitrogen sources urea and ammonium sulfate). Means and standard deviations of triplicate cultures are depicted. Significance has been determined for NMeAla (orange) and NMePhe (blue) concentrations based on a two-sided unpaired Welch-t-test (*: $p \le 0.05$, **: $p \le 0.01$, ***: $p \le 0.001$). When not indicated, no significant difference in NMePhe production was detected by comparing constant MMA and glucose concentration.