Supplementary data

Applicable		Product							
targets	Origin	No. ^a	Purpose of application	Active ingredients ^b					
Human	Fuyang, Anhui 1 Treatm		Treatment of gastrointestinal disorder for adult	Lactobacillus spp., Bifidobacterium spp.					
	Fuyang, Anhui	2	Treatment of gastrointestinal disorder for infant, adult an	d Lactobacillus spp.					
			pregnant woman						
	Fuyang, Anhui	3	Treatment of gastrointestinal disorder for infant, adult an pregnant woman	d Lactobacillus spp.					
	Beijing	4	Treatment of indigestion and diarrhea for infant	<u>E. faecium</u> , B. subtilis					
	Beijing	5	Treatment of indigestion and diarrhea for infant	<u>E. faecium</u> , B. subtilis					
	Beijing	6	Treatment of gastrointestinal disorder for adult	<u>E. faecium</u> , B. subtilis					
	Beijing7Treatment of indigestion and diarrhea for infantE. faecium, B. subtilis								
	Chaozhou, Guangdong 8 Treatment of gastrointestinal disorder for infant, adult and <i>Lactobacillus</i> spp.								
			pregnant woman						
	Guangzhou, Guangdong	zhou, Guangdong 9 Treatment of gastrointestinal improvement for pregnant woman <i>Lactobacillus</i> spp., <i>Bifidobacterium</i> spp., <i>Streptoco</i>							
	Guangzhou, Guangdong	10	Treatment of gastrointestinal improvement for adult	Lactobacillus spp.					
	Zhuhai, Guangdong	<u>11</u>	Treatment of gastrointestinal disorder for infant and pregnan	nt Lactobacillus spp., Bifidobacterium spp.					
			woman						
	Zhuhai, Guangdong	12	Treatment of gastrointestinal improvement for infant and adult	lt Lactobacillus spp., Bifidobacterium spp.					
	Zhuhai, Guangdong	13	Treatment of gastrointestinal improvement for infant	Lactobacillus spp.					
	Shijiazhuang, Hebei	14	lt Lactobacillus spp., Bifidobacterium spp.						
	Shijiazhuang, Hebei	15 Treatment of gastrointestinal improvement for infant and adult Lactobacillus spp., Bifidobacterium spp.							
	Harbin, Heilongjiang	16	Treatment of gastrointestinal improvement for infant and adult	lt <i>Bifidobacterium</i> spp.					
	Tsitsihar, Heilongjiang	17	Treatment of gastrointestinal improvement for infant and adult	lt Lactobacillus spp., Bifidobacterium spp., Streptococcus spp.					
	Tsitsihar, Heilongjiang	18	Treatment of gastrointestinal improvement for infant and adult	lt Lactobacillus spp., Bifidobacterium spp., Streptococcus spp.					
	Xinxiang, Henan	19	Treatment of gastrointestinal improvement for infant and adult	lt Lactobacillus spp., Bifidobacterium spp.					
	Xinxiang, Henan	20	Treatment of gastrointestinal improvement for infant and adult	lt Lactobacillus spp., Bifidobacterium spp.					
	Zhengzhou, Henan	21	Treatment of gastrointestinal improvement for infant and adult	lt Lactobacillus spp., Bifidobacterium spp., Streptococcus spp.					
	Hohhot, Inner Mongolia	22	Treatment of gastrointestinal improvement for infant and adult	lt Lactobacillus spp., Streptococcus spp.					

 Table S1. Information of commercial probiotic products.

Nanjing, Jiangsu	23	Treatment of allergy for infant and adult	Lactobacillus spp., Bifidobacterium spp., Streptococcus spp.
Nanjing, Jiangsu	24	Treatment of gastrointestinal disorder for infant and adult	Lactobacillus spp., Bifidobacterium spp., Streptococcus spp.
Nanjing, Jiangsu	25	Treatment of allergy for infant and adult	Lactobacillus spp., Bifidobacterium spp., Streptococcus spp.
Suzhou, Jiangsu	26	Treatment of gastrointestinal improvement for infant and adult	lt <i>Lactobacillus</i> spp.
Shenyang, Liaoning	27	Treatment of gastrointestinal improvement for infant	Lactobacillus spp., Bifidobacterium spp.
Shenyang, Liaoning	28	Treatment of gastrointestinal disorder and diarrhea for adult	B. licheniformis
Shenyang, Liaoning	29	Treatment of gastrointestinal disorder and diarrhea for infant	B. licheniformis
Shenyang, Liaoning	30	Treatment of gastrointestinal improvement for infant	Lactobacillus spp., Bifidobacterium spp.
Shenyang, Liaoning	<u>31</u>	Treatment of gastrointestinal disorder and diarrhea for infant	B. licheniformis
Shenyang, Liaoning	32	Treatment of gastrointestinal disorder for adult	B. licheniformis
Liaocheng, Shandong	33	Treatment of gastrointestinal improvement for adult	Lactobacillus spp.
Qingdao, Shandong	34	Treatment of gastrointestinal improvement for infant and adult	lt Lactobacillus spp., Bifidobacterium spp.
Qingdao, Shandong	35	Treatment of gastrointestinal disorder for infant	Lactobacillus spp.
Zibo, Shandong	36	Treatment of gastrointestinal improvement for adult	Lactobacillus spp., Bifidobacterium spp., Streptococcus spp.
Shanghai	37	Treatment of gastrointestinal improvement for infant and adult	lt Lactobacillus spp., Bifidobacterium spp.
Shanghai	38	Treatment of indigestion and diarrhea for adult	Lactobacillus spp., <u>E. faecalis</u>
Jincheng, Shanxi	39	Treatment of constipation and diarrhea for adult	Lactobacillus spp., <u>E. faecalis</u>
New Taipei, Taiwan	40	Treatment of gastrointestinal improvement for adult	Bifidobacterium spp.
Taipei, Taiwan	41	Treatment of gastrointestinal improvement for infant and adu	lt Lactic acid bacteria
Yilan, Taiwan	42	Treatment of gastrointestinal improvement for infant	Lactobacillus spp.
America	43	Treatment of gastrointestinal improvement for adult	Lactobacillus spp.
Australia	44	Treatment of gastrointestinal improvement for adult	Lactobacillus spp.
South Korea	45	Treatment of gastrointestinal improvement for pregnant woma	m Lactobacillus spp., Bifidobacterium spp.
South Korea	<u>46</u>	Treatment of gastrointestinal improvement for pregnant woma	m Lactobacillus spp., Bifidobacterium spp.
South Korea	47	Treatment of gastrointestinal improvement for infant	Lactobacillus spp.
Anhui, Hefei	48	Feed additive for livestock	-
Beijing	49	Excreta degradation for livestock	-
Beijing	<u>50</u>	Excreta degradation for poultry	-
Beijing	51	Excreta degradation for poultry and livestock	-
Chongqing	52	Feed additive for livestock	B. subtilis
Daqing, Heilongjiang	<u>53</u>	Feed additive for livestock	B. subtilis, B. licheniformis
Luoyang, Henan	54	Feed additive for swine and chicken	B. subtilis, B. licheniformis, lactic acid bacteria

Animal

Luoyang, Henan Luoyang, Henan Xinxiang, Henan Zhengzhou, Henan Changsha, Hunan Taizhou, Jiangsu Taizhou, Jiangsu Taizhou, Jiangsu Taizhou, Jiangsu Xinghua, Jiangsu Zhenjiang, Jiangsu Nanchang, Jiangxi Xinyu, Jiangxi Yichun, Jiangxi Yichun, Jiangxi Taian, Shandong Taian, Shandong Shanghai Chengdu, Sichuan Tianjin Hangzhou, Zhejiang Aquaculture Beijing Zhengzhou, Henan Zhengzhou, Henan Zhengzhou, Henan Zhengzhou, Henan

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

<u>80</u>

81

82

83

84

85

86

Feed additive for poultry and livestock Treatment of diarrhea for livestock Feed additive for poultry Feed additive for swine Feed fermentation Feed additive for poultry Feed additive for poultry and livestock Feed additive for poultry and livestock Feed additive for chicken Treatment of fungal infection for poultry and livestock Feed additive for livestock Feed additive for livestock Feed additive for swine Feed additive for poultry and livestock Feed additive for livestock Feed additive for poultry Treatment of diarrhea for poultry Feed additive for poultry and livestock Feed additive for poultry and livestock Feed additive for poultry and livestock Feed additive for poultry Treatment of diarrhea for swine Feed additive for poultry and livestock Feed additive for rabbit Feed additive for poultry and livestock Feed additive for poultry and livestock Feed additive for pigeon Water purification Water purification Water purification Water purification Water purification

Bacillus spp., lactic acid bacteria, Actinomyces spp., Yeast
Bacillus spp., lactic acid bacteria, Actinomyces spp., Yeast
Bacillus spp., Lactobacillus spp.
Bacillus spp., lactic acid bacteria, Yeast
Bacillus spp., lactic acid bacteria, Yeast
B. subtilis, Lactobacillus spp.
B. subtilis, Enterococcus spp., lactic acid bacteria

E. faecalis

B. subtilis B. subtilis, E. faecalis, Lactobacillus spp., Yeast B. subtilis, B. licheniformis, Lactobacillus spp., clostridium spp. B. subtilis, Lactobacillus spp. B. subtilis B. subtilis, B. licheniformis, Lactobacillus spp. Bacillus spp. Bacillus spp., lactic acid bacteria B. subtilis, E. faecalis, Lactobacillus spp., Yeast Bacillus spp., Bifidobacterium spp., lactic acid bacteria B. subtilis, E. faecalis, Yeast B. subtilis, Pediococcus sp., Yeast B. subtilis, lactic acid bacteria B. subtilis, lactic acid bacteria, Yeast Bacillus spp., lactic acid bacteria, Actinomyces spp., Yeast, E. faecalis Bacillus spp., Enterococcus spp., Lactobacillus spp., Yeast B. coagulans B. subtilis, Lactobacillus spp., Yeast Bacillus spp., lactic acid bacteria, Yeast B. subtilis, B. cereus

Bacillus spp., lactic acid bacteria, Yeast

	Zhengzhou, Henan	87	Water purification	-
	Zhengzhou, Henan	<u>88</u>	Inhibit algae growth	Bacillus spp., lactic acid bacteria, Actinomyces spp.
	Zhengzhou, Henan	<u>89</u>	Water purification	Bacillus spp., lactic acid bacteria, Yeast
	Nanjing, Jiangsu	<u>90</u>	Water purification	Bacillus spp., Lactobacillus spp., Nitrobacteria spp., Thiobacillus spp.
	Nanjing, Jiangsu	<u>91</u>	Water purification	B. subtilis, lactic acid bacteria, Nitrobacteria spp.
	Xinyu, Jiangxi	92	Water purification	Bacillus spp., lactic acid bacteria, Bifidobacterium spp.
	Taipei, Taiwan	93	Water purification	B. subtilis
	Hangzhou, Zhejiang	<u>94</u>	Water purification	Bacillus spp.
	Zhoushan, Zhejiang	<u>95</u>	Water purification	B. subtilis
Plant	Beijing	<u>96</u>	Biocontrol	Bacillus spp.
	Beijing	<u>97</u>	Biocontrol and plant growth promotion	Bacillus spp.
	Shaoqing, Guangdong	98	Biocontrol	P. fluorescens
	Shaoqing, Guangdong	99	Biocontrol	P. fluorescens
	Harbin, Heilongjiang	100	Biocontrol	P. fluorescens
	Luoyang, Henan	<u>101</u>	Plant growth promotion	B. subtilis, B. licheniformis
	Nanyang, Henan	102	Biocontrol and plant growth promotion	B. subtilis
	Zhengzhou, Henan	103	Plant growth promotion	Bacillus spp., lactic acid bacteria, Yeast
	Zhengzhou, Henan	<u>104</u>	Biocontrol and plant growth promotion	-
	Yidu, Hubei	105	Plant growth promotion	B. subtilis, B. licheniformis
	Xinyu, Jiangxi	<u>106</u>	Biocontrol and plant growth promotion	Bacillus spp., lactic acid bacteria, Bifidobacterium spp.
	Binzhou, Shandong	107	Biocontrol	P. fluorescens
	Zhucheng, Shandong	108	Biocontrol	P. fluorescens
	Jinhua, Zhejiang	109	Biocontrol	P. fluorescens
	Netherland	110	Biocontrol and plant growth promotion	B. subtilis, B. licheniformis, B. cereus, Actinomyces spp.

Note: (a) Probiotic products exhibiting hemolysis were in bold and underlined. (b) -, the active ingredient was not identified in the product; Ingredients of product contained

Enterococcus spp. were in bold and underlined.

Table 52. Brief introduction of virtuence factor function	Table S2.	. Brief in	troduction	of virulence	factor	function
--	-----------	------------	------------	--------------	--------	----------

Related factors	Function
Ace	Mediating binding to immobilized collagen type I, collagen type IV, and mouse laminin.
Acm	Interacts with collagen type I and to a lesser extent with collagen type IV.
Bee or Srt	Biofilm enhancer.
BopD	Homologous to a sugar-binding transcriptional regulator involved in biofilm production; The actual role is unknown, but the association of enhanced biofilm formation in the presence of glucose and the possible involvement of a sugar-binding transcriptional regulator suggest a linkage to increased biofilm production in <i>E. faecalis</i> in the presence of specific carbohydrates.
CdsA	Phosphatidate cytidylyltransferase catalyzes the synthesis of cytidine diphosphate-diacylglycerol, an essential phospholipid intermediate for the production of membrane phosphatidylglycerol and cardiolipin, contributes to capsule synthesis and daptomycin resistance.
Ebp	Ebp pili are important for adherence to host extracellular matrix proteins, including fibrinogen and collagen and play a role in biofilm formation.
EcbA	Binds to collagen type V.
EfaA	Might be functioning as an adhesion in endocarditis; A solute binding-protein receptor for manganese transport system.
Esp	Contributes to colonization and persistence of <i>E. faecalis</i> in urinary tract infections and also associates with promotion of primary attachment and biofilm formation of <i>E. faecalis</i> on abiotic surfaces.
Fsr	The Fsr quorum sensing system is an important regulator with both positive and negative effects, regulating <i>gelE</i> , <i>sprE</i> and <i>bopD</i> expression that are important for biofilm formation, along with genes implicated in several metabolic pathway.
Fss	microbial surface components recognizing adhesive matrix molecules.
GelE	Capable of degrading a broad spectrum of substrates, including casein, hemoglobin, collagen, fibrin, gelatin, certain <i>E. faecalis</i> sex-pheromone-related peptides and polymerized fibrin; May functioning as clearing the bacterial cell wall of misfolded proteins, and disruption of <i>gelE</i> gene has been shown to increase the bacterial chain length; May play a role in increasing dissemination of bacteria in high density environments; A <i>gelE</i> knockout has shown reduced virulence in models of mouse peritonitis, rabbit endophthalmitis, and in a Caenorhabditis elegans virulence model.
IS16	Transposase enriched in hospital-associated strains; contributes to the genomic plasticity of <i>E. faecium</i> .
Hyaluronidase (H	yl) An important pathogenic bacterial spreading factor, and cleave hyaluronan, which is a constituent of the extracellular matrix of connective tissues; May also pave the way for deleterious effects of other bacterial toxins, thus increasing the magnitude of the damage; Another role may be to supply nutrients for the bacteria, since the degradation products of its target substrates are disaccharides that can be transported and metabolized intracellularly be bacteria.
orf2514 & orf251	5 pseudogene encoding a surface B-type Cna protein, enhance adherence to extracellular matrix molecules.
PGC-1	PGC-1 is unique among Efm pilus loci as it also contains a housekeeping class A sortase and may play a role during colonization or pathogenesis in the mammalian host.
PGC-2	A pili cluster similar to Ebp from <i>E. faecium</i> .
PGC-3	may play a role during colonization or pathogenesis in the mammalian host but their biological functions remain to be determined.
PGC-4	putative role in biofilm formation and adhesion.

PtsD	PtsD encodes a sugar-specific membrane-associated EIID subunit required for carbohydrate transport; it is the first gene contributing to intestinal colonization in Efm during
	antibiotic treatment.
SagA	broad-spectrum binding to extracellular matrix (ECM) proteins, including fibrinogen, collagen type I, collagen type IV, fibronectin, and laminin.
Sal	Resistance to environmental stress and cell morphology.
Scm	Binds to collagen type V and fibrinogen.
SgrA	An LPxTG surface adhesin binds to fibrinogen and nidogen; May also play a role in adhesion to medical-device-related infections by forming a biofilm.
SprE	Contributes to pathogenesis in several infection models including Caenorhabditis elegans, mouse peritonitis, and a rabbit endophthalmitis model.
Swp	Novel class of cell surface proteins found in most Efm isolates. WxL proteins' involvement in binding human extracellular matrix proteins.
uppS	Contributes to host immune evasion and antibiotic resistance.

T 1 .	Lasta ADCa		AR (µg/mL) ^a										
Isolate	ARGs	AROS		Erythromycin	Tetracycline	Tigecycline	Ciprofloxacin	Gentamicin	Streptomycin	Linezolid	Florfenicol	Vancomycin	Teicoplanin
38-1	lsaA		4	1	0.5	≤0.25	1	16	128	2	8	≤0.25	0.5
39-1	lsaA		2	1	0.5	≤0.25	1	8	64	2	8	≤0.25	0.5
1-1	aac(6')-Ii msrC		4	8	≤0.25	≤0.25	1	8	64	2	4	0.25	0.5
3-1	aac(6')-Ii msrC		4	16	≤0.25	≤0.25	0.25	16	64	2	8	0.5	0.5
4-1	aac(6')-Ii msrC	pbp5	4	16	≤0.25	≤0.25	4	8	32	2	4	0.5	≤0.25
5-1	aac(6')-Ii msrC	pbp5	4	16	≤0.25	≤0.25	1	8	32	2	4	0.5	0.5
6-1	aac(6')-Ii msrC	pbp5	4	16	≤0.25	≤0.25	2	8	32	2	4	0.25	≤0.25
7-1	aac(6')-Ii msrC	pbp5	4	8	≤0.25	≤0.25	1	8	32	2	4	0.5	0.5
12-1	aac(6')-Ii msrC		4	16	≤0.25	≤0.25	0.125	16	64	2	8	0.25	0.5
18-1	aac(6')-Ii msrC		4	8	≤0.25	≤0.25	0.25	64	64	2	4	0.25	0.5
25-1	aac(6')-Ii msrC		4	8	≤0.25	≤0.25	0.5	8	32	2	4	0.5	0.5
26-1	aac(6')-Ii msrC		4	16	≤0.25	≤0.25	1	8	64	2	8	1	≤0.25
28-1	aac(6')-Ii msrC		4	8	≤0.25	≤0.25	0.25	16	64	2	4	1	≤0.25
32-1	aac(6')-Ii msrC		4	1	≤0.25	≤0.25	0.5	8	128	2	8	<0.25	0.5
44-1	aac(6')-Ii msrC	pbp5	4	32	≤0.25	≤0.25	1	4	32	2	4	0.5	0.5
45-1	aac(6')-Ii msrC		2	16	≤0.25	≤0.25	1	4	32	2	8	0.5	≤0.25
46-1	aac(6')-Ii msrC		4	4	≤0.25	≤0.25	1	8	32	2	8	0.25	0.5
54-1	aac(6')-Ii msrC		2	16	≤0.25	≤0.25	0.25	8	64	2	4	0.5	0.5
55-1	msrC		2	32	≤0.25	≤0.25	0.25	8	64	2	4	0.5	≤0.25
56-1	aac(6')-Ii msrC		2	8	≤0.25	≤0.25	0.5	4	32	2	8	0.25	≤0.25
65-1	aac(6')-Ii msrC		4	8	≤0.25	≤0.25	0.5	32	64	2	8	0.5	≤0.25
71-1	aac(6')-Ii msrC	pbp5	2	2	≤0.25	≤0.25	1	16	64	2	4	0.25	≤0.25
73-1	aac(6')-Ii msrC		4	16	≤0.25	≤0.25	0.25	64	128	2	4	< 0.25	0.5

Table S3. Genotype and phenotype of antimicrobial resistance in 36 *Enterococcus* spp. isolates.

76-1	aac(6')-Ii	msrC pbp5	8	16	≤0.25	≤0.25	0.125	16	64	2	4	0.5	≤0.25
77-1	aac(6')-Ii	msrC	4	16	≤0.25	≤0.25	0.125	4	32	2	8	0.25	≤0.25
86-1	aac(6')-Ii	msrC	8	16	≤0.25	≤0.25	0.5	8	32	2	8	0.5	0.5
88-1	aac(6')-Ii	msrC	4	16	0.5	≤0.25	1	8	64	2	4	0.25	≤0.25
88-2	aac(6')-Ii	msrC	4	8	≤0.25	≤0.25	0.25	16	64	2	8	0.25	0.5
97-1	aac(6')-Ii	msrC	2	8	≤0.25	≤0.25	0.25	16	64	2	8	< 0.25	≤0.25
102-1	aac(6')-Ii	msrC pbp5	8	1	≤0.25	≤0.25	0.5	4	64	2	4	0.25	0.5
104-1	aac(6')-Ii	msrC	8	16	≤0.25	≤0.25	0.5	8	64	2	8	0.25	≤0.25
105-1	aac(6')-Ii	msrC	4	16	≤0.25	≤0.25	0.5	4	128	2	8	0.5	0.5
106-1	aac(6')-Ii	msrC	4	16	≤0.25	≤0.25	0.25	8	32	2	4	0.5	≤0.25
64-1	vanC		1	1	1	≤0.25	2	1	16	2	8	8	0.5
53-1	vanC		1	4	0.5	≤0.25	1	2	16	2	8	8	≤0.25
74-1	vanC	tetM	4	0.5	64	≤0.25	0.5	4	16	2	8	8	≤0.25

Note: (a) The MICs over the breakpoint were in bold and italic; no Enterococcus of high-level gentamicin resistance (HLGR) or high-level streptomycin resistance (HLSR) was found.