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Governing equations:

For the microfluidic geometries, which comprise the flow of fluids, the equations of motion for a
laminar regime (continuity and momentum) are defined as equations (1) and (2):
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where the parameter p is density, v is velocity, p is the pressure of the fluid, u is the dynamic viscosity, and
Up is the bulk viscosity of the fluid [1]. Additionally, the pressure in the fluid can be defined as a function
of sound speed in liquid (equation 3) in which c§ is the speed of sound in the liquid [2].
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Since it occurs in the mass transfer system, the equation for representing mass transport can be written
as equation (4), where c; is the concentration of species i, J; represents molecular mass flux, and R; is the
expression for reaction rate.
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For the chemical reaction, we considered a bimolecular irreversible elementary chemical reaction with
a variable reaction rate constant as shown in equations (5) and (6).
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By considering appropriate boundary conditions and combining the above-mentioned equations, the
movement of fluid in the microfluidic device can be solved numerically.
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Figure S1. (a) Verification of our simulation vs the numerical work of Endaylalu and Tien (2022)
[3] mean error = 5% (inlet velocity = 55.6 um/s) (MI = 1 represents perfect mixing). (b) The
validation of our simulation results with the experimental works of Nama et. al at different length
positions of microchannel (Qi» = 2 ul/min), position 1: y = 1100 gm, position 2: y = 1700 um,
position 3: y =2300 um, and position 4: y = 2900 um (MI = 0 represents perfect mixing and MI

= (.5 represents unmixed fluids) [4].
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Figure S2. The graph for illustrating the mesh independent study. (a) 1-lobed, (b) 2-lobed, (c) 3-
lobed, and (d) 4-lobed structures.
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Figure S3. The illustration of generated vortices around oscillatory lobes for different structures and
configurations. (a,b,¢) 1-lobed structure in Type (I, 11, and III) configurations, (d,e,f) 2-lobed structure in
Type (I, I, and III) configurations, (g,h,i) 3-lobed structure in Type (I, II, and III) configurations, and
(j,k,1) 4-lobed structure in Type (I, II, and III) configurations.
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Figure S4. The concentration distribution of reactants (C, and Cp) and products (C.) of chemical reaction
through acoustic microchannel for different multi-lobed and configurations.
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Figure S5. The distribution of solute concentration by considering (a) enabled and (b) disabled acoustic
waves.
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Figure S6. The concentration profile of solute along the microchannel width under disabled BAW
conditions (Type III configuration, 1, 2, 3, 4-lobed structures, inlet velocity = 200 pm/s)
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