
 

 

 

 
Micromachines 2023, 14, 275. https://doi.org/10.3390/mi14020275 www.mdpi.com/journal/micromachines 

Supplementary Materials 

Effects of Channel Length Scaling on the Electrical  

Characteristics of Multilayer MoS2 Field Effect Transistor 

Sreevatsan Radhakrishnan 1, Suggula Naga Sai Vishnu 1, Syed Ishtiyaq Ahmed 1  

and Rajagopalan Thiruvengadathan 1,2,* 

1 SIERS Research Laboratory, Department of Electronics and Communication Engineering, Amrita School of 

Engineering, Amrita Vishwa Vidyapeetham, INDIA, Coimbatore 641112, India 
2 Mechanical Engineering Program, Department of Engineering and Technology, Southern Utah University, 

Cedar City, UT 84720, USA 

* Correspondence: rajagopalanthiruveng@suu.edu 

Description on NEGF Formulation 

Consider a channel represented by it Hamiltonian(H), the contact terminals repre-

senting, source (S) and drain (D) with individual fermi levels µ� and µ�, respectively. The 

Hamiltonian H corresponds to the total energy of that system. Its spectrum consists of the 

set of energy eigenvalues, is the set of outcomes obtainable from a measurement of the 

system's total energy. Applied  potential between the two contacts determines the differ-

ence of the Fermi levels µ� and µ�, thermal distribution of electron in through the Fermi 

function, fS/D, Self-energy matrices,  ∑�  and  ∑� describe coupling between the channel 

and the S/D contacts. This self-energy represents the contribution to the particle's energy 

or effective mass, due to interactions between the particle and its environment. The fermi 

levels correspond to occupancy factor of electron levels. Knowing H, µ�, µ�, ∑� , and 

∑�, we can compute the retarded Green’s function [1] as 
� = [�� − � − ∑�  − ∑�] �� 

where EI is the matrix of energy of electron in channel and eigenvalues of H.  

Hamiltonian : 

The Hamiltonian H is given by [1]: 

� = ��  +  � where U indicates the potential caused by bias voltages and H0 is band 

structures. In this section, the procedure to arrive at the Hamiltonian matrix [H0] will be 

illustrated to describe the electronic bands of semiconductor channel in transistors.  

 Effective Mass Hamiltonian 

The complexity of band structure of MoS2 makes it hard to describe H of the material. 

Effective mass can be adapted because its description around conduction band edge can 

be approximated to be parabola. This relation can describe the conduction band minimum 

as  

�(�)  =  ��  + 
����

���
 

where �� ��� ��  are effective mass of the electron and conduction band, respectively. 

A differential equation which has same energy eigenvalues can be expressed like this [1]: 

���  − 
��

���
▽�� �(��⃗ )  = ��(��⃗ ) 

with any �(� ��⃗ )  =  ���(���⃗  . �⃗) are eigenfunctions of this differential equation. The corre-

sponding eigenvalues of the eigenfunctions are �(��⃗ )  =  ��  + 
����

���
. By FEM, this is con-

verted into a Hamiltonian matrix H0 that is given by: 
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where “a” is the lattice spacing and N is no. of lattices.  

 Tight-binding model 

The Tight-binding (TB) model is based on for E-K band structure, by superposition 

of wave functions of isolated atoms to arrive at approximate wavefunctions. If, a unit cell 

connected to ‘m’ unit cells around it, referred as neighbour unit cells. Matrix [Hmn]of size 

(b x b) describes connection between the two-unit cells, where b is the number of basis 

functions per unit cell.  

The overall matrix equation is given by [1]: 

�[���]

�

{��}  =  �{��} 

 where {��} is a (b x 1) column vector that describes the wavefunction of the 

unit cell ‘m’. If solution of this equation is {��} = {��}�� ���⃗  .  �� and based on the 

periodicity of the lattice, this equation becomes 

�(��)  =  �(���⃗ )�� where � (���⃗ )  =  ∑ [���] �����⃗  (��������⃗ ��������⃗ )
�  

The result of this equation is arrived by computing across all the coupling links to its 

neighbouring unit cells. The size of ��(���⃗ )�  is same as that of Hnm, b x b, and is used in 

plotting the band structure. By using any numerical package, the eigenvalues and eigen 

functions of �(���⃗ )is obtained and these eigenvalues become energy levels in bandstruc-

ture for each value of ���⃗ . On contrary, a collection of such matrices [Hnm] make up the 

matrix [H0] representing a periodic solid, which is of size (Nb x Nb), N being the total 

number of unit cells. This model enables us to calculate H0 and offers accurate details of 

band structure. This calculated H0 is employed to run self-consistent simulation in NEGF 

formalism as mentioned earlier. 

Self-Energy: 

The contact self-energy matrices calculated from contact surface Green’s function,  

��  =  ((� + φ�,�)� −  � −  �∗���) which is solved iteratively. Her φ0 and φL are the bound-

ary potentials for the particular barrier height and drain bias and � represents the contact 

coupling matrix. 

Further, for ballistic transportation, the local density of states (LDOS) is represented 

using advanced Green’s function as 

[�]  =  �[� − �∗]  =  [��]  + [��]  ,where ��/�  =  ���/��∗ and ��/�  =  �[∑�/�  −

 ∑�/�
∗ ] describes level broadening  due  to  contact. Herein, “*” represents the complex 

conjugate of the given Then the density matrix [41]is given by correlation function and is 

described as  
[��]  =  [����∗]ƒ� + [����∗]ƒ� 

Current at source or drain terminal per spin [1] is calculated as,  

� =  
���

�
∫ ���

��

�
[��(�� − µ�)  − ��(�� − µ�)] =  

���

�
[µ� − µ�] 

Alternatively, the current can be expressed as, 

I =
��

�
∫  ���/�(�)��

��

��
 

where ���/�  =  �����[��/��]ƒ�/�  −  �����[��/���], h and e are Planck's constant and elec-

tron charge, respectively. 
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Poisson equation using FDM method: 

Poisson equation is solved by using the finite difference method for a single back gate 

MOSFET structure. Using Gauss’s law, the Poisson equation can be used to perform nu-

merical analysis [2]. 

�[���⃗ (�, ���⃗ )] . ��⃗  =  � �[� −  � + �� − ��] �Ω
 

Ω

 

where � is dielectric constant as function of coordinate,  ��⃗   is the electric field, p is the 

hole concentration, n is  the  electron  concentration, ND and NA are  donor  and  ac-

ceptor  concentrations, respectively, e is charge of free electron. All internal nodal equa-

tions are arrived from Gauss’s law, while the equations for nodes at interface are arrived 

by applying boundary conditions. The spatial derivatives for representing an internal 

node at [m, n], the finite difference method (FDM) is employed. By substituting ��⃗  =  − ▽

� ,  the discretized linear finite difference equation of Gauss law is 
�

�
����,�  + 

�

�
��,���  −  2 �

�

�
 + 

�

�
� �� ,� +

�

�
��,��� + 

�

�
�� ,��� =  −

��

�
�(��  − ��  −  �)�,� 

where a and b are spacings along X and Z directions. � =  ���/��� if node [m, n] is ox-

ide/channel regions. If the node is located at the channel/oxide interface, the FDM equa-

tion becomes  
�

�
�� ��,�  + 

�

2�
�1 + 

����

����
� ��,��� − �

�

�
+

�

�
� �1 + 

����

����
� �� ,� +  

�

2�
�1 + 

����

����
� �� ,���  +  

�

�

����

����
����,�  

=   −
��

����
�(��  − ��  −  �)�,� 

where ���� and ���� indicates dielectric constants for the materials above and below the 

interface.[2]  

This expression shows that voltage of Vm,n is solely determined by charge at [m, n] 

node and the voltage at the four nearest neighbours. This cluster is called computational 

molecule and is termed as the five-pointed star.[3] 

Two of the common forms of boundary condition are: 

 Dirichlet   

 Neumann  

The former is written as, ꓦ(�) = ƒ(�)  (� ⋲  Ω�) where Ω� is the nodes satisfying the 

Dirichlet condition.[3] This behaves as a forced solution to the function f at given points.  

For gate terminal, substituting Ω� with nodes at gate-oxide interfaces, the numerical 

equation can be easily written as, �� ,� =  ��  where VG is the gate voltage.  

On the other hand, the Neumann boundary condition can be used if derivative is 

known for a given function f, which is defined as: 
��(�)

��
 =   � ′(�)   � ⋲  Ω� where N is the unit normal vector, and � ′(�) is the set of 

available derivatives.[3] If this,  � ′(�) is fixed to 0.0 V/m, 

�� ,�  −  ��±�,� = 0 for the top and bottom edges 

�� ,� −  �� ,�±� =  0 for the left and right edges 

2�� ,� − (����,�  + ��,�±�)  = 0 for the two corner nodes along the top edge and  

2�� ,�  −  (����,�  + ��,�±�)  = 0 for the two corner nodes along the bottom edge. 

The solution over all voltage nodes Vm,n can be represented as a simple matrix equa-

tion as the node is solely dependent on its four nearest neighbours. Let the vector x con-

taining all the voltage samples in the domain can be described as [3], 
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� = [��,�  ��,� ��,�  . . . . .     ��,���      ��,�  ��,���   … ..              ���,��
]� 

we can write entire problem as a matrix equation form: �� =  � where b is a vector con-

tains information about the charge densities as well as the boundary conditions. There-

fore, solution vector x is computed by matrix inversion and is given by: � =  ����. New-

ton-Raphson method is used to arrive at a convergent solution. 
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