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This document contains six MATLAB functions (one main function, and five helper functions) that can be used 
to run Monte Carlo simulations of silane diffusion-grafting model.  The first function (MC_AVG) calls the other 
five.  To run, use the following format in the command line: 

MC_AVG(xr,ng,pgraft,steps,releasetime,N,tfinal,numsim) 

Inputs:    xr = x-coordinate of simulated right boundary,  

                ng = number of gridpoints in the x-direction,  

                pgraft = probability of grafting,  

                tfinal = simulations end-time,  

                steps = number of timesteps between 0 and tfinal,  

                1 particle is released after releasetime steps,  

                N = number of available particles,  

                numsim = number of independent simulations run who outputs will be averaged. 

Output:   The code outputs two files in the main directory where all the codes are saved:  

H.mat = averaged histogram matrix for the number of grafted particles at each of the six snapshots 
in time.  

                binc.mat = location of the bin centers for the histogram matrix saved. 

 
1) Main function:  MC_AVG. 
function MC_AVG(xr,ng,pgraft,steps,releasetime,N,tfinal,numsim) 
 
ntimes = 6; % Number of snapshots in time between 0 and tfinal 
 
% Define the simulated chamber domain: [xl,xr] x [yb,yt] 
xl = 0; % xr is an input 
yb = 0; yt = 1; 
 



h = 0.01; % step-size in the x-direction 
 
% Initialize histogram matrix 
Hsum = zeros(ntimes,ng+1); 
 
% Run the same simulation numsim times and average across the results 
for i = 1:numsim 
    % Monte Carlo code running one simulation for diffusion-grafint model 
    [X,Y,G,A,~] = 
MC_2D_LL_Step3b_flux_AVG(xl,xr,yb,yt,pgraft,steps,releasetime,N,tfinal); 
    % Storing the x- and y-coordinates of gas-phase and grafted particles in separate 
    % histogram matrices 
    [Xgr,~,~,~] = grafted_gas_flux_save(ntimes,N,X,Y,G,A); 
    % Saving the binning center locations for the histogram matrices 
    [H,binc] = binning_centers_save(ntimes,xl,xr,h,ng,Xgr); 
    % Storing histogram matrices 
    Hsum = Hsum + H; 
end 
 
% Compute average across numsim simulations 
Havg = Hsum./numsim; 
 
% Saving the averaged histogram matrix and bin center matrix 
save('H.mat','Havg'); 
save('binc.mat','binc'); 
 
end 

 
i)    Helper function 1:  MC_2D_LL_Step3b_flux_AVG. 
function [X,Y,G,A,T] = 
MC_2D_LL_Step3b_flux_AVG(xl,xr,yb,yt,pgraft,steps,releasetime,N,tfinal) 
 
format short g 
 
dig = 6; % Digits of accuracy 
dt = round(tfinal/steps,dig); % Time-step 
ngy = 100; % Number of gridpoints in the y-direction between yb and yt 
h = round(1/ngy,dig); % Step-size in the y-direction 
 
% Initialize state vectors 
grafted = zeros(1,N); % Two states: grafted = 0 is for gas-phase, grafted = 1 is for 
grafted particles 



active = zeros(1,N); % Two states: active = 0 is a latent particle, active = 1 is for 
particles introduced in the chamber 
active(1) = 1; % At t = 0 one particle is introduced in the simulation chamber 
release = 2; % After "releasetime" time-steps, one more particle is released 
 
% Set up initial condition at t = 0 
x = zeros(1,N); % On the left-end of the domain 
% Randomly distributing particles along the y-axis allowing them to take only discrete 
locations along the grid 
y = round(floor((ngy+1)*rand(1,N))/ngy,dig); 
% Initializing vectors to store variables at six intermediate times 
X = zeros(6,N); 
Y = zeros(6,N); 
G = zeros(6,N); 
A = zeros(6,N); 
T = zeros(6,1); 
 
% Time 
t = zeros(1,steps+1); % time vector 
% Number of time steps at six intermediate times 
steps1 = round(steps/6,dig); steps2 = steps1*2; steps3 = steps1*3;  
steps4 = steps1*4; steps5 = steps1*5; 
 
% Monte Carlo simulation 
for i = 1:steps % Time stepping 
    for j = 1:N % Looping over each particle 
        if active(j) == 1 
            % If particle j is not grafted 
            if grafted(j) == 0  
                % "Coin flip" to pick whether particle grafts or moves 
                coinG = rand(1); 
                if coinG <= pgraft % The particle should graft if the site is empty 
                    % Check if there is already a grafted particle with 
                    % coordinates (x(j),y(j)) 
                    diff = 0; 
                    for k = 1:N 
                        if grafted(k) == 1 
                            grcheckx = round(x(k) - x(j),dig); 
                            grchecky = round(y(k) - y(j),dig); 
                            % If there is already a grafted particle with coordinates 
(x(j),y(j)) 
                            if grcheckx == 0 && grchecky == 0 
                                % then diffuse 
                                [x(j),y(j)] = coin4(x(j),y(j),h,dig); 
                                diff = 1; 
                                break 



                            end 
                        end 
                    end 
                    % If there is no grafted particle at (x(j),y(j)) 
                    if diff == 0 
                        % then graft 
                        grafted(j) = 1; 
                    end 
                else % Otherwise, the particle diffuses 
                    [x(j),y(j)] = coin4(x(j),y(j),h,dig); 
                end 
                 
                % Set up a rectangular domain (x,y) = [xl,xr] x [yb,yt] with  
                % billiard-like reflections at the four walls 
                % Bouncing particles back into the channel for y < yb and y > yt 
                while y(j) > yt 
                    y(j) = round(y(j)-h,dig); 
                end 
                while y(j) < yb 
                    y(j) = round(y(j)+h,dig); 
                end 
                % Bouncing particles back into the channel for x < xl and x > xr  
                while x(j) > xr 
                    x(j) = round(x(j)-h,dig); 
                end 
                while x(j) < xl 
                 x(j) = round(x(j)+h,dig); 
                end 
            end 
        end 
    end 
     
    % Adding in one more particle after "releasetime" time-steps 
    if mod(i,releasetime) == 0 
        active(release) = 1; 
        release = release + 1; 
    end 
     
    % Saving the particle data at six instances in time 
    if i == steps1 
        [X(1,:),Y(1,:),G(1,:),A(1,:),T(1)] = 
save_matrices_flux(dt,i,dig,x,y,grafted,active); 
    elseif i == steps2 
        [X(2,:),Y(2,:),G(2,:),A(2,:),T(2)] = 
save_matrices_flux(dt,i,dig,x,y,grafted,active); 
    elseif i == steps3 



        [X(3,:),Y(3,:),G(3,:),A(3,:),T(3)] = 
save_matrices_flux(dt,i,dig,x,y,grafted,active); 
    elseif i == steps4 
        [X(4,:),Y(4,:),G(4,:),A(4,:),T(4)] = 
save_matrices_flux(dt,i,dig,x,y,grafted,active); 
    elseif i == steps5 
        [X(5,:),Y(5,:),G(5,:),A(5,:),T(5)] = 
save_matrices_flux(dt,i,dig,x,y,grafted,active); 
    elseif i == steps 
        [X(6,:),Y(6,:),G(6,:),A(6,:),T(6)] = 
save_matrices_flux(dt,i,dig,x,y,grafted,active); 
    end 
    t(i+1) = round(dt*i,dig); % Update time vector  
end 
 
end 

 
ii)    Helper function 2:  coin4. 
 

function [xv,yv] = coin4(xv,yv,h,dig) 
 
% "Coin flip" to pick direction of diffusion among 4 equally probable options: North, 
South, East, West 
coin = floor(4*rand(1));  
 
% 0 = N, 1 = S, 2 = E, 3 = W 
if coin == 0 
    yv = round(yv+h,dig); 
elseif coin == 1 
    yv = round(yv-h,dig); 
elseif coin == 2 
    xv = round(xv+h,dig); 
else 
    xv = round(xv-h,dig); 
end 
 
end 

 
iii)    Helper function 3:  save_matrices_flux. 
function [X,Y,G,A,T] = save_matrices_flux(dt,i,dig,x,y,grafted,active) 



 
X = x; 
Y = y; 
G = grafted; 
A = active; 
T = round(dt*(i-1),dig); 
 
end 

 
iv) Helper function 4:  grafted_gas_flux_save. 
function [xgr,ygr,xgas,ygas] = grafted_gas_flux_save(ntimes,N,x,y,grafted,active) 
 
% Save x- and y- coordinates of grafted and gas-phase particles in four separate 
matrices 
countgraft = 1; 
countgas = 1; 
 
for i = 1:N 
    if active(ntimes,i) == 1 
        if grafted(ntimes,i) == 1 
            xgrn(countgraft) = x(ntimes,i); 
            ygrn(countgraft) = y(ntimes,i); 
            countgraft = countgraft + 1; 
        else 
            xgasn(countgas) = x(ntimes,i); 
            ygasn(countgas) = y(ntimes,i); 
            countgas = countgas + 1; 
        end 
    end 
end 
 
lgr = length(xgrn); 
lgas = length(xgasn); 
 
% Define x- and y-ccordinate vectors for grafted and gas-phase particles 
% including NaN for each element where there isn't a particle 
xgr = zeros(ntimes,lgr); xgr(ntimes,:) = xgrn; xgr(1:ntimes-1,:) = NaN; 
xgas = zeros(ntimes,lgas); xgas(ntimes,:) = xgasn; xgas(1:ntimes-1,:) = NaN; 
 
ygr = zeros(ntimes,lgr); ygr(ntimes,:) = ygrn; ygr(1:ntimes-1,:) = NaN; 
ygas = zeros(ntimes,lgas); ygas(ntimes,:) = ygasn; ygas(1:ntimes-1,:) = NaN; 
 
for j = 1:ntimes-1 



    countgraft = 1; 
    countgas = 1; 
    for i = 1:N 
        if active(j,i) == 1 
            if grafted(j,i) == 1 
                xgr(j,countgraft) = x(j,i); 
                ygr(j,countgraft) = y(j,i); 
                countgraft = countgraft + 1; 
            else 
                xgas(j,countgas) = x(j,i); 
                ygas(j,countgas) = y(j,i); 
                countgas = countgas + 1; 
            end 
        end 
    end 
end 
 
end 

 
v) Helper function 5:  binning_centers_save 
function [H,binc] = binning_centers_save(ntimes,xl,xr,h,ng,xgr) 
 
% Define edges for binning in the x-direction 
xg = zeros(1,ng+2); 
index = 1; 
 
% Each bin contains one grid line in the y-direction: all particles with 
% the same y-coordinate are binned together 
for j=(xl-h/2):h:(xr+h/2) 
    xg(index) = j; 
    index = index + 1;  
end 
 
% Generate histogram without printing figure and save histogram values 
for i = 1:ntimes 
    xgrv = xgr(i,:); 
    figure('visible','off') 
    Hv = histogram(xgrv,xg); 
    hv = Hv.Values; 
    H(i,:) = hv; 
end 
 
% Save bin centers 



binc = Hv.BinEdges(1:end-1) + Hv.BinWidth/2; 
 
end 

 
For questions reach out to corresponding author Francesca Bernardi at fbernardi@wpi.edu. 


