
Supplementary Material for Passive control of silane diffusion
for gradient application of surface properties
Monte Carlo Code
Riley L. Howard, Francesca Bernardi, Matthew Leff, Emma Abele, Nancy L. Allbritton and Daniel M.
Harris

This document contains six MATLAB functions (one main function, and five helper functions) that can be used
to run Monte Carlo simulations of silane diffusion-grafting model. The first function (MC_AVG) calls the other
five. To run, use the following format in the command line:

MC_AVG(xr,ng,pgraft,steps,releasetime,N,tfinal,numsim)

Inputs: xr = x-coordinate of simulated right boundary,

 ng = number of gridpoints in the x-direction,

 pgraft = probability of grafting,

 tfinal = simulations end-time,

 steps = number of timesteps between 0 and tfinal,

 1 particle is released after releasetime steps,

 N = number of available particles,

 numsim = number of independent simulations run who outputs will be averaged.

Output: The code outputs two files in the main directory where all the codes are saved:

H.mat = averaged histogram matrix for the number of grafted particles at each of the six snapshots
in time.

 binc.mat = location of the bin centers for the histogram matrix saved.

1) Main function: MC_AVG.
function MC_AVG(xr,ng,pgraft,steps,releasetime,N,tfinal,numsim)

ntimes = 6; % Number of snapshots in time between 0 and tfinal

% Define the simulated chamber domain: [xl,xr] x [yb,yt]
xl = 0; % xr is an input
yb = 0; yt = 1;

h = 0.01; % step-size in the x-direction

% Initialize histogram matrix
Hsum = zeros(ntimes,ng+1);

% Run the same simulation numsim times and average across the results
for i = 1:numsim
 % Monte Carlo code running one simulation for diffusion-grafint model
 [X,Y,G,A,~] =
MC_2D_LL_Step3b_flux_AVG(xl,xr,yb,yt,pgraft,steps,releasetime,N,tfinal);
 % Storing the x- and y-coordinates of gas-phase and grafted particles in separate
 % histogram matrices
 [Xgr,~,~,~] = grafted_gas_flux_save(ntimes,N,X,Y,G,A);
 % Saving the binning center locations for the histogram matrices
 [H,binc] = binning_centers_save(ntimes,xl,xr,h,ng,Xgr);
 % Storing histogram matrices
 Hsum = Hsum + H;
end

% Compute average across numsim simulations
Havg = Hsum./numsim;

% Saving the averaged histogram matrix and bin center matrix
save('H.mat','Havg');
save('binc.mat','binc');

end

i) Helper function 1: MC_2D_LL_Step3b_flux_AVG.
function [X,Y,G,A,T] =
MC_2D_LL_Step3b_flux_AVG(xl,xr,yb,yt,pgraft,steps,releasetime,N,tfinal)

format short g

dig = 6; % Digits of accuracy
dt = round(tfinal/steps,dig); % Time-step
ngy = 100; % Number of gridpoints in the y-direction between yb and yt
h = round(1/ngy,dig); % Step-size in the y-direction

% Initialize state vectors
grafted = zeros(1,N); % Two states: grafted = 0 is for gas-phase, grafted = 1 is for
grafted particles

active = zeros(1,N); % Two states: active = 0 is a latent particle, active = 1 is for
particles introduced in the chamber
active(1) = 1; % At t = 0 one particle is introduced in the simulation chamber
release = 2; % After "releasetime" time-steps, one more particle is released

% Set up initial condition at t = 0
x = zeros(1,N); % On the left-end of the domain
% Randomly distributing particles along the y-axis allowing them to take only discrete
locations along the grid
y = round(floor((ngy+1)*rand(1,N))/ngy,dig);
% Initializing vectors to store variables at six intermediate times
X = zeros(6,N);
Y = zeros(6,N);
G = zeros(6,N);
A = zeros(6,N);
T = zeros(6,1);

% Time
t = zeros(1,steps+1); % time vector
% Number of time steps at six intermediate times
steps1 = round(steps/6,dig); steps2 = steps1*2; steps3 = steps1*3;
steps4 = steps1*4; steps5 = steps1*5;

% Monte Carlo simulation
for i = 1:steps % Time stepping
 for j = 1:N % Looping over each particle
 if active(j) == 1
 % If particle j is not grafted
 if grafted(j) == 0
 % "Coin flip" to pick whether particle grafts or moves
 coinG = rand(1);
 if coinG <= pgraft % The particle should graft if the site is empty
 % Check if there is already a grafted particle with
 % coordinates (x(j),y(j))
 diff = 0;
 for k = 1:N
 if grafted(k) == 1
 grcheckx = round(x(k) - x(j),dig);
 grchecky = round(y(k) - y(j),dig);
 % If there is already a grafted particle with coordinates
(x(j),y(j))
 if grcheckx == 0 && grchecky == 0
 % then diffuse
 [x(j),y(j)] = coin4(x(j),y(j),h,dig);
 diff = 1;
 break

 end
 end
 end
 % If there is no grafted particle at (x(j),y(j))
 if diff == 0
 % then graft
 grafted(j) = 1;
 end
 else % Otherwise, the particle diffuses
 [x(j),y(j)] = coin4(x(j),y(j),h,dig);
 end

 % Set up a rectangular domain (x,y) = [xl,xr] x [yb,yt] with
 % billiard-like reflections at the four walls
 % Bouncing particles back into the channel for y < yb and y > yt
 while y(j) > yt
 y(j) = round(y(j)-h,dig);
 end
 while y(j) < yb
 y(j) = round(y(j)+h,dig);
 end
 % Bouncing particles back into the channel for x < xl and x > xr
 while x(j) > xr
 x(j) = round(x(j)-h,dig);
 end
 while x(j) < xl
 x(j) = round(x(j)+h,dig);
 end
 end
 end
 end

 % Adding in one more particle after "releasetime" time-steps
 if mod(i,releasetime) == 0
 active(release) = 1;
 release = release + 1;
 end

 % Saving the particle data at six instances in time
 if i == steps1
 [X(1,:),Y(1,:),G(1,:),A(1,:),T(1)] =
save_matrices_flux(dt,i,dig,x,y,grafted,active);
 elseif i == steps2
 [X(2,:),Y(2,:),G(2,:),A(2,:),T(2)] =
save_matrices_flux(dt,i,dig,x,y,grafted,active);
 elseif i == steps3

 [X(3,:),Y(3,:),G(3,:),A(3,:),T(3)] =
save_matrices_flux(dt,i,dig,x,y,grafted,active);
 elseif i == steps4
 [X(4,:),Y(4,:),G(4,:),A(4,:),T(4)] =
save_matrices_flux(dt,i,dig,x,y,grafted,active);
 elseif i == steps5
 [X(5,:),Y(5,:),G(5,:),A(5,:),T(5)] =
save_matrices_flux(dt,i,dig,x,y,grafted,active);
 elseif i == steps
 [X(6,:),Y(6,:),G(6,:),A(6,:),T(6)] =
save_matrices_flux(dt,i,dig,x,y,grafted,active);
 end
 t(i+1) = round(dt*i,dig); % Update time vector
end

end

ii) Helper function 2: coin4.

function [xv,yv] = coin4(xv,yv,h,dig)

% "Coin flip" to pick direction of diffusion among 4 equally probable options: North,
South, East, West
coin = floor(4*rand(1));

% 0 = N, 1 = S, 2 = E, 3 = W
if coin == 0
 yv = round(yv+h,dig);
elseif coin == 1
 yv = round(yv-h,dig);
elseif coin == 2
 xv = round(xv+h,dig);
else
 xv = round(xv-h,dig);
end

end

iii) Helper function 3: save_matrices_flux.
function [X,Y,G,A,T] = save_matrices_flux(dt,i,dig,x,y,grafted,active)

X = x;
Y = y;
G = grafted;
A = active;
T = round(dt*(i-1),dig);

end

iv) Helper function 4: grafted_gas_flux_save.
function [xgr,ygr,xgas,ygas] = grafted_gas_flux_save(ntimes,N,x,y,grafted,active)

% Save x- and y- coordinates of grafted and gas-phase particles in four separate
matrices
countgraft = 1;
countgas = 1;

for i = 1:N
 if active(ntimes,i) == 1
 if grafted(ntimes,i) == 1
 xgrn(countgraft) = x(ntimes,i);
 ygrn(countgraft) = y(ntimes,i);
 countgraft = countgraft + 1;
 else
 xgasn(countgas) = x(ntimes,i);
 ygasn(countgas) = y(ntimes,i);
 countgas = countgas + 1;
 end
 end
end

lgr = length(xgrn);
lgas = length(xgasn);

% Define x- and y-ccordinate vectors for grafted and gas-phase particles
% including NaN for each element where there isn't a particle
xgr = zeros(ntimes,lgr); xgr(ntimes,:) = xgrn; xgr(1:ntimes-1,:) = NaN;
xgas = zeros(ntimes,lgas); xgas(ntimes,:) = xgasn; xgas(1:ntimes-1,:) = NaN;

ygr = zeros(ntimes,lgr); ygr(ntimes,:) = ygrn; ygr(1:ntimes-1,:) = NaN;
ygas = zeros(ntimes,lgas); ygas(ntimes,:) = ygasn; ygas(1:ntimes-1,:) = NaN;

for j = 1:ntimes-1

 countgraft = 1;
 countgas = 1;
 for i = 1:N
 if active(j,i) == 1
 if grafted(j,i) == 1
 xgr(j,countgraft) = x(j,i);
 ygr(j,countgraft) = y(j,i);
 countgraft = countgraft + 1;
 else
 xgas(j,countgas) = x(j,i);
 ygas(j,countgas) = y(j,i);
 countgas = countgas + 1;
 end
 end
 end
end

end

v) Helper function 5: binning_centers_save
function [H,binc] = binning_centers_save(ntimes,xl,xr,h,ng,xgr)

% Define edges for binning in the x-direction
xg = zeros(1,ng+2);
index = 1;

% Each bin contains one grid line in the y-direction: all particles with
% the same y-coordinate are binned together
for j=(xl-h/2):h:(xr+h/2)
 xg(index) = j;
 index = index + 1;
end

% Generate histogram without printing figure and save histogram values
for i = 1:ntimes
 xgrv = xgr(i,:);
 figure('visible','off')
 Hv = histogram(xgrv,xg);
 hv = Hv.Values;
 H(i,:) = hv;
end

% Save bin centers

binc = Hv.BinEdges(1:end-1) + Hv.BinWidth/2;

end

For questions reach out to corresponding author Francesca Bernardi at fbernardi@wpi.edu.

