
Supplementary document for: A modular and expandable
ecosystem for metabolomics data annotation in R

Johannes Rainer, Andrea Vicini, Liesa Salzer, Jan Stanstrup, Josep M Badia,
Steffen Neumann, Michael Stravs, Vinicius Verri Hernandes, Laurent Gatto, Sebastian Gibb

and Michael Witting

This documents provides use cases describing the annotation of untarget metabolomics and small com-
pound datasets using functionality from the MetaboAnnotation, MetaboCoreUtils and CompoundDb pack-
ages. All data used in this document is available within the github repository https://github.com/jorainer/
MetaboAnnotationTutorials. Additional use cases and examples can be found in the packages’ vignettes
and workshops/tutorials. See section Package repositories and additional tutorials for links to the package
repositories and tutorials.

Installation instructions

The R packages as well as the example files used in this document can be installed with the R code below:

install.packages("BiocManager")
BiocManager::install("jorainer/MetaboAnnotationTutorials")

The source code for this document along with the test data can be downloaded from the github repository
https://github.com/jorainer/MetaboAnnotationTutorials with the command (or alternatively downloading
the zip archive directly from the github page).

git clone https://github.com/jorainer/MetaboAnnotationTutorials

MS1 annotation

In this example we annotate chromatographic peaks identified in a test sample provided within this repos-
itory first based only on their m/z values and then using their m/z and retention times against previously
determined values for a set of pure standards. The test data represents LC-MS/MS measurements of a set
of metabolite standards. In brief, aliquots for pure standards of 15 metabolites were solved in water and
injected into a LC-MS system. Details are provided in the Material and Methods section in the main text.
Below we load the data which is distributed within the MetaboAnnotationTutorials package and perform
the chromatographic peak detection using the xcms package.

library(xcms)

fl <- system.file("mzML", "HighIS_Mix07_CE20_POS.mzML",
package = "MetaboAnnotationTutorials")

std_data <- readMSData(fl, mode = "onDisk")

1

https://bioconductor.org/packages/3.14/MetaboAnnotation
https://bioconductor.org/packages/3.14/MetaboCoreUtils
https://bioconductor.org/packages/3.14/CompoundDb
https://github.com/jorainer/MetaboAnnotationTutorials
https://github.com/jorainer/MetaboAnnotationTutorials
https://github.com/jorainer/MetaboAnnotationTutorials
https://github.com/jorainer/MetaboAnnotationTutorials
https://bioconductor.org/packages/3.14/xcms

We next perform the chromatographic peak detection using the centWave algorithm followed by a peak
refinement to reduce the number of peak detection artifacts, such as split-peaks or overlapping peaks (see
the LC-MS/MS data analysis with xcms vignette from the xcms package for details on the chromatographic
peak detection settings).

#' Peak detection
cwp <- CentWaveParam(snthresh = 10, prefilter = c(3, 4000), ppm = 40,

peakwidth = c(2, 8), integrate = 2)
std_data <- findChromPeaks(std_data, param = cwp)
#' Peak refinement
std_data <- refineChromPeaks(

std_data, MergeNeighboringPeaksParam(expandRt = 3))

In total 175 chromatographic peaks have been identified. This is even more than would be expected since
the sample represents a mixture of 15 pure standards solved in water. Below we display the first 6 of the
detected chromatographic peaks.

head(chromPeaks(std_data))

mz mzmin mzmax rt rtmin rtmax into intb
CP001 355.28240 355.28193 355.28369 30.495 24.575 37.641 83909.909 78939.997
CP002 358.98005 358.97954 358.98037 10.390 10.065 11.356 7002.894 6897.381
CP003 413.26607 413.26573 413.26704 32.892 25.729 37.641 102217.289 100770.550
CP004 301.14091 301.13962 301.14279 25.729 24.575 40.013 47095.520 44283.920
CP005 80.02494 80.02419 80.02543 40.013 35.261 56.554 53223.003 53005.070
CP006 63.99953 63.99950 63.99958 42.371 35.261 61.268 156775.850 156184.543
maxo sn sample
CP001 10329.126 25 1
CP002 5138.685 32 1
CP003 22355.266 90 1
CP004 7085.818 40 1
CP005 6082.308 181 1
CP006 17705.469 242 1

We next annotate these chromatographic peaks using only their m/z values. As a reference we load a
CompDb database containing all compounds from the Human Metabolom Database (Wishart et al. 2021)
version 5.0 which is also provided as a data release on the MetaboAnnotationTutorials github repository.
The database was build from HMDB 5.0 (2021-11-02) using the CompoundDb package (see the package
documentation for more information).

Below we download the database from github to a temporary folder.

#' Download the CompDb database using curl
library(curl)
dbname <- "CompDb.Hsapiens.HMDB.5.0.sqlite"
db_file <- file.path(tempdir(), dbname)
curl_download(

paste0("https://github.com/jorainer/MetaboAnnotationTutorials/",
"releases/download/2021-11-02/", dbname),

destfile = db_file)

We next load the database using the CompoundDb package.

2

https://github.com/jorainer/MetaboAnnotationTutorials
https://bioconductor.org/packages/3.14/CompoundDb
https://RforMassSpectrometry.github.io/CompoundDb
https://RforMassSpectrometry.github.io/CompoundDb

library(CompoundDb)
#' Load a CompDb database with compound annotation from HMDB
cdb <- CompDb(db_file)
cdb

class: CompDb
data source: HMDB
version: 5.0
organism: Hsapiens
compound count: 217776
MS/MS spectra count: 64920

Note: while we are here annotating chromatographic peaks from an xcms result object, it would also be
possible to annotate LC-MS features using the same approach by simply exchanging the chromPeaks call with
featureDefinitions. In addition, the annotation could also be performed on a SummarizedExperiment
representing the preprocessing results which can be generated from an xcms result object using the quantify
method.

Annotation using m/z values

We next extract all peaks from the xcms result object and annotate them using the matchMz function against
all compounds from HMDB (the compound annotations can be extracted from the CompDb database with the
compounds function). The reference database does not provide m/z values but only exact masses for each
compound. Thus, in order to annotate our chromatographic peaks’ m/z values, m/z values for expected ions
of the compounds need to be calculated first. With Mass2MzParam we can configure the parameters for the
annotation. Parameter adducts allows to specify the adducts (ions) we expect to see mostly in the data set.
For our example we assume to see mostly [M+H]+ and [M+Na]+ positive ions. With parameters tolerance
and ppm we can finally define also the absolute and/or m/z relative acceptable difference, respectively, for
m/z values to be considered matching.

library(MetaboAnnotation)

#' Get the chromatographic peaks and add a column with the peak_id
pks <- data.frame(peak_id = rownames(chromPeaks(std_data)),

chromPeaks(std_data))

#' Set parameters for the m/z-based annotation
param <- Mass2MzParam(adducts = c("[M+H]+", "[M+Na]+"),

tolerance = 0, ppm = 10)

#' Perform the matching
pks_match <- matchMz(

pks,
compounds(cdb, c("compound_id", "exactmass", "formula", "name")),
param = param)

pks_match

Object of class Matched
Total number of matches: 697
Number of query objects: 175 (112 matched)
Number of target objects: 217776 (393 matched)

3

The result object handles the potential many-to-many matching between chromatographic peaks (query)
and reference (target) and contains all information from both the query and the target object along with
the score for the match (in this case the difference between the m/z values). Below we list all available
information in the result object.

colnames(pks_match)

[1] "peak_id" "mz" "mzmin"
[4] "mzmax" "rt" "rtmin"
[7] "rtmax" "into" "intb"
[10] "maxo" "sn" "sample"
[13] "target_compound_id" "target_name" "target_formula"
[16] "target_exactmass" "adduct" "score"

The n:m mapping is represented in the matches data frame. It maps each annotated query element to all
matching target elements. Below we list the first 6 rows from that table. Column "score" provides the
difference between the query and target m/z values (in Da).

head(matches(pks_match))

query_idx target_idx adduct score
1 1 6977 [M+H]+ 0.001888540
2 1 7006 [M+H]+ 0.001888540
3 1 158233 [M+H]+ 0.001888540
4 1 160274 [M+H]+ 0.001888540
5 1 170679 [M+H]+ 0.001888540
6 2 164617 [M+H]+ 0.003242238

For users it’s however more convenient to extract annotation information with the matchedData function,
that will return a data frame with all annotations. If query elements are annotated to more than one
target element they will be listed in as many rows as there are matches. Not matching query elements are
represented with a single row in the result table, containing NA for all annotations. Below we extract all
annotations, restricting to some of the annotation columns.

matchedData(pks_match, c("peak_id", "target_name",
"target_formula", "adduct"))

DataFrame with 760 rows and 4 columns
peak_id target_name target_formula adduct
<character> <character> <character> <character>
CP001 CP001 MG(0:0/18:2(9Z,12Z)/.. C21H38O4 [M+H]+
CP001.1 CP001 MG(18:2(9Z,12Z)/0:0/.. C21H38O4 [M+H]+
...
CPM188 CPM188 NA NA NA
CPM189 CPM189 NA NA NA

As we can see, the number of rows of this data frame is much larger than the number of chromatographic
peaks. Most peaks are in fact annotated to several possible compounds based on their m/z. The average
number of compounds to which a chromatographic peak in this data is annotated is calculated below.

4

matches(pks_match)[, 1] |>
table() |>
mean()

[1] 6.223214

Annotations in the result object are organized by query, annotations for individual query elements can thus
be accessed very easily. Below we list all annotations for the first chromatographic peak.

matchedData(pks_match[1], c("peak_id", "target_name",
"target_formula", "adduct"))

DataFrame with 5 rows and 4 columns
peak_id target_name target_formula adduct
<character> <character> <character> <character>
CP001 CP001 MG(0:0/18:2(9Z,12Z)/.. C21H38O4 [M+H]+
CP001.1 CP001 MG(18:2(9Z,12Z)/0:0/.. C21H38O4 [M+H]+
CP001.2 CP001 Glyceryl monolinoleate C21H38O4 [M+H]+
CP001.3 CP001 2-Linoleoyl Glycerol C21H38O4 [M+H]+
CP001.4 CP001 RIOPROSTIL C21H38O4 [M+H]+

All compounds have thus the exact same chemical formula and hence, using only the m/z value, we can
not discriminate between them or determine which would be the correct annotation. Considering also the
retention times would allow a better annotation and increase its confidence.

Annotation using reference m/z and retention times

For LC-MS experiments compounds are first chromatographically separated based on some property of the
compound (other than their mass). Thus, also the retention times contain information that can improve the
annotation. In this section we use information from a previous experiment in which pure standards were
measured with the same LC-MS setup used to generate the present test data and in which the retention time
as well as the ion (adduct) and its m/z value were determined. These reference values were thus empirically
determined on the same instruments with the same setup and should thus help to get higher confidence
annotations.

Below we load the reference retention time and m/z data for some of the measured standards.

fl <- system.file("txt", "std_ions.txt",
package = "MetaboAnnotationTutorials")

std_ions <- read.table(fl, sep = "\t", header = TRUE)
head(std_ions)

compound_id ion_adduct ion_rt ion_mz
1 HMDB0001539 [M+H]+ 176 203.1503
2 HMDB0000905 [M+H]+ 208 332.0754
3 HMDB0001847 [M+H]+ 35 195.0877
4 HMDB0001413 [M+H]+ 217 490.1224
5 HMDB0000562 [M+H]+ 87 114.0662
6 HMDB0000086 [M+H]+ 189 258.1101

5

We can now annotate the chromatographic peaks using this reference data. We configure the matching using
the MzRtParam, which allows to annotate query elements based on m/z and retention times. With ppm we
define again the m/z-relative acceptable difference of the m/z values and with toleranceRt the absolute
acceptable difference in measured retention times. The parameters mzColname and rtColname allow us to
define the names of the columns in the query and target objects containing the m/z values and retention time
values for the matching. Settings for ppm and toleranceRt should be adapted to the experimental setup,
retention time difference could e.g. be larger for HILIC-based chromatographic separation. Below we use a
difference of 7 seconds (since retention times in std_ions and in the xcms result are reported in seconds).

param <- MzRtParam(ppm = 10, toleranceRt = 7)
pks_match <- matchMz(pks, std_ions, param = param,

mzColname = c("mz", "ion_mz"),
rtColname = c("rt", "ion_rt"))

pks_match

Object of class Matched
Total number of matches: 9
Number of query objects: 175 (9 matched)
Number of target objects: 19 (9 matched)

In addition to supplying the reference (target) data as a data.frame we could also directly use an IonDb.
This type of annotation object extends the above used CompDb database providing in addition to general
compound annotations also information on measured ions including their retention times and m/z values. It
is thus designed to contain reference annotation databases for specific LC-MS setups and MS instrumentation
used in a lab. Below we create such an IonDb database (which will be saved in the present example to a
temporary file) from the HMDB CompDb database and add our ion annotations to it.

#' Create an IonDb filling it with data from cdb.
idb <- IonDb(tempfile(), cdb)

#' Insert measured m/z and retention times for ions
idb <- insertIon(idb, std_ions)
idb

class: IonDb
data source: HMDB
version: 5.0
organism: Hsapiens
compound count: 217776
MS/MS spectra count: 64920
ion count: 19

The advantage of such an annotation database over individual (text) file-based annotation approaches is
obvious: along with the annotation data also metadata can be saved and the database can be versioned,
which is crucial for reproducible workflows. Also, the database’s SQLite file is portable and can be distributed
and used on different computers. In addition, it would also be possible to use a MySQL-based database
system which would enable centralized annotation resources in a laboratory. More information on the creation
and usage of annotation resources with the CompoundDb package is provided in its package vignettes which
are also available here.

We can now annotate our peaks against that database using the same call as above, but providing the idb
as target parameter.

6

https://RforMassSpectrometry.github.io/CompoundDb/

pks_match <- matchMz(
pks, ions(idb, c("compound_id", "ion_adduct", "ion_mz", "ion_rt", "name")),
param = param, mzColname = c("mz", "ion_mz"),
rtColname = c("rt", "ion_rt"))

pks_match

Object of class Matched
Total number of matches: 9
Number of query objects: 175 (9 matched)
Number of target objects: 19 (9 matched)

In total 9 chromatographic peaks were annotated to an ion of one of the standards. We can identify the
chromatographic peaks with available annotation using the whichQuery function, that returns their index
in the query. Below we thus also subset the matched results to only those chromatographics peaks with an
annotation.

whichQuery(pks_match)

[1] 61 68 74 86 88 131 142 148 162

pks_match <- pks_match[whichQuery(pks_match)]

We next build a result table for the successfully annotated chromatographic peaks.

library(pander)
pandoc.table(as.data.frame(

matchedData(pks_match, c("peak_id", "target_name", "score", "score_rt"))),
style = "rmarkdown", split.tables = Inf)

peak_id target_name score score_rt
CP067 CP067 Caffeine 0.0006847 0.261
CP074 CP074 Creatinine 0.0001926 0.238
CP080 CP080 Sphingosine 0.0003391 3.013
CP094 CP094 L-Methionine 0.0001487 6.839
CP096 CP096 1-Methyluric acid 0.0002982 0.626
CP143 CP143 3-Methylhistidine 0.0002466 0.734
CP154 CP154 Asymmetric dimethylarginine 0.0003642 3.688
CP162 CP162 Glycerophosphocholine 0.0003917 0.098
CP176 CP176 Deoxyadenosine monophosphate 0.0007856 2.337

Columns "score" and "score_rt" contain the difference between the query and the annotated target’s m/z
(in Da) and retention time (in seconds), respectively.

Annotation using reference m/z and retention indices

Retention time is a valuable orthogonal information for metabolite identification, but chromatographic con-
ditions are far from being standardized. Even when using nominally the same chromatographic system,
meaning column and eluents, differences in retention times arise due to dead volumes, gradient delay vol-
umes, etc. In GC-MS retention time indexing has been used to normalize for drifts in retention times by

7

converting them into retention indices. A similar approach has been recently described for LC-MS (Stoffel et
al. 2021) using N-Alkyl-pyridinium sulfonates as retention indexing substances. Their use allows to convert
retention times into retention indices and to compare retention information across different LC-MS systems.

We first load data from an untargeted metabolomic experiments. This data has been completely processed.
Each feature is identified by a unique name.

library(MetaboCoreUtils)

fl <- system.file("txt", "rti_ms_pos_features.txt",
package = "MetaboAnnotationTutorials")

ms1_features <- read.table(fl, header = TRUE, sep = "\t")
head(ms1_features)

Name mz rtime Cel_pure_1.B.1_01_21144
1 Cluster_00003 71.01397 1.527515 946.2993
2 Cluster_00004 72.33667 1.529377 1402.1213
3 Cluster_00006 86.37420 1.946073 7245.5283
4 Cluster_00018 66.03701 1.454697 1306.3455
5 Cluster_00025 71.03044 1.259239 256197.7500
6 Cluster_00030 80.03526 1.259666 242820.3125
Cel_pure_1.B.1_01_21149 Cel_pure_1.B.1_01_21154 Cel_pure_1.B.1_01_21159
1 806.088 796.521 771.9626
2 1427.545 1334.492 1400.0985
3 8062.006 8196.895 8502.9092
4 1389.757 1338.029 1341.1783
5 238996.312 212299.125 242366.2188
6 209218.312 174476.219 223134.0000
Cel_pure_1.B.1_01_21164
1 713.608
2 1503.299
3 9668.902
4 1584.487
5 239547.453
6 215851.828

Likewise we load the information on the N-Alkyl-pyridinium sulfonates. The retention index is defined as
the number of carbons in the alkyl chain times 100.

fl <- system.file("txt", "rti_ms_pos_naps.txt",
package = "MetaboAnnotationTutorials")

ms1_naps <- read.table(fl, header = TRUE, sep = "\t")
head(ms1_naps)

rtime rindex
1 NA 100
2 1.5 200
3 1.7 300
4 2.6 400
5 5.9 500
6 10.3 600

The relationship between the retention time and retention index can be plotted.

8

plot(ms1_naps)

We can use the N-Alkly-pyridinium sulfonates to convert the retention times of the measured features using
the indexRtime function. By default linear interpolation is used for conversion, but other (custom) functions
can be defined if required.

ms1_features$rindex <- indexRtime(ms1_features$rtime, ms1_naps)

This data can then be annotated using reference databases. Two different databases are used. One was
obtained on a UHPLC column and one on a HPLC column of the same column chemistry. The untargeted
data was obtained from a HPLC column, but using a different LC hardware, resulting in different absolute
retention times.

fl <- system.file("txt", "rti_db_hplc.txt",
package = "MetaboAnnotationTutorials")

db_hplc <- read.table(fl, header = TRUE, sep = "\t",
quote = "", comment.char = "")

9

fl <- system.file("txt", "rti_db_uhplc.txt",
package = "MetaboAnnotationTutorials")

db_uhplc <- read.table(fl, header = TRUE, sep = "\t",
quote = "", comment.char = "")

Next we can define the Mass2MzRtParam similar to above. We will use an absolute error of 10 retention index
units and use [M+H]+and [M+Na]+ adducts.

match_param <- Mass2MzRtParam(adducts = c("[M+H]+", "[M+Na]+"),
tolerance = 0.005,
toleranceRt = 10)

Matching can now be performed. Important is that the column with the retention index needs to be defined
using rtColname. Matching is performed against both databases and results are then filtered to only contain
features with at least one match.

matches_hplc <- matchMz(ms1_features,
db_hplc,
match_param,
massColname = "exact.mass",
mzColname = "mz",
rtColname = "rindex")

matches_hplc <- matches_hplc[whichQuery(matches_hplc)]

matches_uhplc <- matchMz(ms1_features,
db_uhplc,
match_param,
massColname = "exact.mass",
mzColname = "mz",
rtColname = "rindex")

matches_uhplc <- matches_uhplc[whichQuery(matches_uhplc)]

We next build a result table for the successfully annotated chromatographic peaks. First for the results
matching with the HPLC database.

library(pander)
pandoc.table(head(as.data.frame(

matchedData(matches_hplc, c("Name", "mz", "rindex", "target_name",
"adduct", "score", "score_rt")))),

style = "rmarkdown", split.tables = Inf)

Name mz rindex target_name adduct score score_rt
24 Cluster_00116 132.1 328.8 5-AMINOLEVULINATE [M+H]+ 0.005076 1.226

24.1 Cluster_00116 132.1 328.8 N-ACETYLALANINE [M+H]+ 0.005076 1.226
395 Cluster_01443 125.1 418.4 4-METHYLCATECHOL [M+H]+ 0.0002352 8.425
434 Cluster_01544 133 392.7 GLUTARATE [M+H]+ 0.000176 0.733

434.1 Cluster_01544 133 392.7 GLUTARATE [M+H]+ 0.000176 2.267
469 Cluster_01596 138.1 582.2 SALICYLAMIDE [M+H]+ 0.0001774 1.791

Then for matching with the UPLC database.

10

library(pander)
pandoc.table(head(as.data.frame(

matchedData(matches_uhplc, c("Name", "mz", "rindex", "target_name",
"adduct", "score", "score_rt")))),

style = "rmarkdown", split.tables = Inf)

Name mz rindex target_name adduct score score_rt
24 Cluster_00116 132.1 328.8 N-ACETYLALANINE [M+H]+ 0.005076 4.774

380 Cluster_01397 123 679.6 BENZOATE [M+H]+ 0.0003409 1.38
434 Cluster_01544 133 392.7 GLUTARATE [M+H]+ 0.000176 4.733

434.1 Cluster_01544 133 392.7 GLUTARATE [M+H]+ 0.000176 3.733
469 Cluster_01596 138.1 582.2 4-AMINOBENZOATE [M+H]+ 0.0001774 2.791

469.1 Cluster_01596 138.1 582.2 ANTHRANILATE [M+H]+ 0.0001774 2.791

MS2 annotation

In addition to MS1 annotation described in the previous section, it is also possible to annotate features (or
chromatographic peaks) by comparing experimentally measured MS2 (MS/MS) spectra against reference
spectra. Such annotation can be performed using the matchSpectra from the MetaboAnnotation package
that takes Spectra objects (with MS2 spectra) as query and target parameters. Such Spectra objects can
be either imported from a variety of input formats, including MGF, MSP, mzML, mzXML or netCDF files,
extracted from xcms result objects or even retrieved from databases such as MassBank (see also the tutorials
from SpectraTutorials for more examples and use cases).

To illustrate this, we will extract in this section MS2 spectra for the annotated chromatographic peaks from
the previous section and compare them against reference MS2 spectra from HMDB. Annotation reliability
can be increased if, in addition to m/z and retention time, also the MS2 spectra for a chromatographic peak
or a feature matches the reference spectrum from a pure standard.

We first extract all MS2 spectra for the annotated chromatographic peaks using the chromPeakSpectra
function from the xcms result object. This will return all MS2 spectra with the precursor m/z and retention
time within the m/z ranges and retention time ranges of the detected chromatographic peaks. For an xcms
result object containing also correspondence results (i.e. grouped chromatographic peaks across samples, also
referred to as features) the featureSpectra function could be used instead.

std_spectra <- chromPeakSpectra(std_data, return.type = "Spectra",
peaks = pks_match$peak_id)

std_spectra

MSn data (Spectra) with 11 spectra in a MsBackendMzR backend:
msLevel rtime scanIndex
<integer> <numeric> <integer>
F1.S107 2 35.650 107
F1.S193 2 66.622 193
...
F1.S707 2 209.046 707
F1.S760 2 221.347 760
... 38 more variables/columns.
##
file(s):
HighIS_Mix07_CE20_POS.mzML

11

https://jorainer.github.io/SpectraTutorials/

For some of the chromatographic peaks we have more than one MS2 spectrum, but in total we have MS2

spectra only for 7 chromatographic peaks. Below we count the number of spectra per peak.

table(std_spectra$peak_id)

##
CP067 CP074 CP080 CP143 CP154 CP162 CP176
1 2 2 2 1 1 2

Before matching the spectra we are cleaning our experimental spectra removing peaks with an intensity
lower than 5% of a spectra’s highest peak intensity and removing spectra with less than 3 peaks.

#' Define a function to remove low intensity peaks
low_int <- function(x, ...) {

x > max(x, na.rm = TRUE) * 0.05
}
#' Remove peaks with an intensity below 5% of BPI
std_spectra <- filterIntensity(std_spectra, intensity = low_int)

#' Remove peaks with less than 3 peaks
std_spectra <- std_spectra[lengths(std_spectra) > 2]
std_spectra

MSn data (Spectra) with 8 spectra in a MsBackendMzR backend:
msLevel rtime scanIndex
<integer> <numeric> <integer>
F1.S107 2 35.650 107
F1.S127 2 38.323 127
...
F1.S600 2 188.408 600
F1.S707 2 209.046 707
... 38 more variables/columns.
##
file(s):
HighIS_Mix07_CE20_POS.mzML
Lazy evaluation queue: 1 processing step(s)
Processing:
Remove peaks based on their intensities and a user-provided function in spectra of MS level(s) 2. [Tue Feb 1 09:15:00 2022]

In addition, we scale the peak intensities within each spectrum to values between 0 and 100. This is mostly
for visualization reason, since most spectra similarity scoring algorithms are independent of absolute peak
intensities.

#' Define a function to *scale* the intensities
scale_int <- function(x, ...) {

maxint <- max(x[, "intensity"], na.rm = TRUE)
x[, "intensity"] <- 100 * x[, "intensity"] / maxint
x

}
#' *Apply* the function to the data
std_spectra <- addProcessing(std_spectra, scale_int)

12

Below we match now these cleaned spectra against the reference spectra from HMDB. We configure the
matching using the CompareSpectraParam allowing m/z differences of 50ppm between peaks from a query
and a target spectrum. Since HMDB does not provide precursor m/z we in addition have to disable the
additional matching filter (i.e. set requirePrecursor = FALSE), which has however a negative impact on
the performance of the comparisons. By default, spectra similarities (calculated with the normalized dot
product) higher than 0.7 will be considered matching.

spectra_match <- matchSpectra(
std_spectra, Spectra(cdb),
param = CompareSpectraParam(ppm = 50, requirePrecursor = FALSE))

spectra_match

Object of class MatchedSpectra
Total number of matches: 27
Number of query objects: 8 (4 matched)
Number of target objects: 64920 (27 matched)

Thus, in total 4 of the query spectra were matched with 27. Below we create a result table for this matching.

res <- spectraData(spectra_match,
c("peak_id", "target_compound_id", "score"))

cmp_id <- unique(res$target_compound_id)
cmp_id <- cmp_id[!is.na(cmp_id)]
cmps <- compounds(cdb, filter = ~ compound_id == cmp_id, "name")
rownames(cmps) <- cmps$compound_id

res$name <- cmps[res$target_compound_id, "name"]
rownames(res) <- NULL
pandoc.table(as.data.frame(res),

style = "rmarkdown", split.tables = Inf)

peak_id target_compound_id score name
CP067 HMDB0001847 0.7258 Caffeine
CP067 HMDB0001847 0.705 Caffeine
CP067 HMDB0001847 0.7016 Caffeine
CP067 HMDB0001847 0.7046 Caffeine
CP080 NA NA NA
CP080 HMDB0253992 0.7589 Laurocapram
CP080 HMDB0253992 0.7789 Laurocapram
CP143 NA NA NA
CP143 HMDB0000479 0.8739 3-Methylhistidine
CP143 HMDB0000479 0.8739 3-Methylhistidine
CP154 NA NA NA
CP162 NA NA NA
CP176 HMDB0000034 0.7165 Adenine
CP176 HMDB0000034 0.7094 Adenine
CP176 HMDB0000034 0.7092 Adenine
CP176 HMDB0000034 0.7133 Adenine
CP176 HMDB0000034 0.7165 Adenine
CP176 HMDB0000034 0.7123 Adenine
CP176 HMDB0000034 0.7165 Adenine

13

peak_id target_compound_id score name
CP176 HMDB0000034 0.7165 Adenine
CP176 HMDB0000034 0.7139 Adenine
CP176 HMDB0000050 0.7067 Adenosine
CP176 HMDB0000050 0.7165 Adenosine
CP176 HMDB0000101 0.7165 Deoxyadenosine
CP176 HMDB0000905 0.9523 Deoxyadenosine monophosphate
CP176 HMDB0000905 0.8143 Deoxyadenosine monophosphate
CP176 HMDB0000905 0.7407 Deoxyadenosine monophosphate
CP176 HMDB0000905 0.9136 Deoxyadenosine monophosphate
CP176 HMDB0000905 0.9523 Deoxyadenosine monophosphate
CP176 HMDB0000905 0.9524 Deoxyadenosine monophosphate
CP176 HMDB0001983 0.7086 5’-Deoxyadenosine

Matching results can also be very easily visualized with the plotSpectraMirror function. Below we show
the results for the first peak (Caffeine). The upper spectrum represents the query, the lower the target
(reference) spectrum.

plotSpectraMirror(spectra_match[1])

14

The results seem to be reasonable. For the second peak (third spectrum) the match was based however on
a single peak.

plotSpectraMirror(spectra_match[3])

15

Note that we could now also add some of the (cleaned and annotated) MS2 spectra from the present test set,
to the IonDb using the insertSpectra function. This enables generation of lab-internal reference databases
including also MS/MS spectra.

Working with data from other tools

MS1-based annotations can be performed on any data.frame or similar that provides m/z and/or retention
time values. For MS2-based annotations a Spectra object would be needed, and that can be imported from
a variety of formats. In this section we show how pre-processing results from an external tool (in this case
MZmine) can be imported and used as input for MetaboAnnotation.

The test data we are using is one of the example data sets for GNPS Feature-Based Molecular Networking
(Nothias et al. 2020). A description on how this data was generated is provided in the GNPS Feature-Based
Molecular Networking documentation. The data set consists of feature abundances (along with retention
time and m/z values) and MS2 spectra for these features. These example files are distributed through the
github repository of the GNPS documentation https://github.com/CCMS-UCSD/GNPSDocumentation.git.

Below we first download the feature table (in csv format) from the above mentioned repository to a temporary
file.

16

https://mzmine.github.io/
https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking-with-mzmine2/
https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking-with-mzmine2/
https://github.com/CCMS-UCSD/GNPSDocumentation.git

f_file <- "MZmine-GNPS_AG_test_featuretable.csv"
url <- paste0("https://raw.githubusercontent.com/CCMS-UCSD/GNPSDocumentation",

"/master/docs/tutorials/AG_tutorial_files/")
curl_download(paste0(url, f_file),

destfile = file.path(tempdir(), f_file))

We next load this file into R using the base read.csv function.

ftable <- read.csv(file.path(tempdir(), f_file), check.names = FALSE)

We can now use this file as an input for MS1-based annotation, as shown in section Annotation using
m/z values above, and match the m/z values of the features against HMDB assuming [M+H]+ and [M+Na]+
adducts. With parameter mzColname we define the column in the input file containing the m/z values. For
MZmine this is column "row m/z".

param <- Mass2MzParam(adducts = c("[M+H]+", "[M+Na]+"), ppm = 10)

f_match <- matchMz(
ftable,
compounds(cdb, c("compound_id", "exactmass", "formula", "name")),
param = param,
mzColname = "row m/z")

f_match

Object of class Matched
Total number of matches: 31333
Number of query objects: 3443 (2251 matched)
Number of target objects: 217776 (13194 matched)

For 2251 of the in total 3443 features a compound matching the feature’s m/z was found.
MS2 spectra can be exported from MZmine in mgf file format. Below we download the MGF file with all
MS2 spectra for the features from the example above to a temporary folder.

s_file <- "MZmine-GNPS_AG_test_GNPS.mgf"
curl_download(paste0(url, s_file),

destfile = file.path(tempdir(), s_file))

Files in MGF format can be imported with the MsBackendMgf package. Below we use this package to create
a Spectra object with all spectra from the example file.

library(MsBackendMgf)
sps_mgf <- Spectra(file.path(tempdir(), s_file),

source = MsBackendMgf())

By default all data fields from the original MGF file are imported. Thus, the Spectra object contains also
a variable called FEATURE_ID with the identifiers for the features the spectra are associated with.

head(sps_mgf$FEATURE_ID)

[1] "1" "2" "3" "4" "6" "7"

This Spectra object could then simply be used as in input parameter to the matchSpectra function as
shown in the MS2 annotation section above to e.g. identify matches with reference spectra from HMDB.

17

https://bioconductor.org/packages/3.14/MsBackendMgf

Package repositories and additional tutorials

• Tutorial with additional examples and explanations for MS2-based annotations: https://jorainer.
github.io/SpectraTutorials/

• Repository of the MsCoreUtils package: https://rformassspectrometry.github.io/MsCoreUtils/
• Repository of the MetaboCoreUtils package: https://rformassspectrometry.github.io/MetaboCoreUtils/
• Repository of the Spectra package: https://rformassspectrometry.github.io/Spectra/
• Repository of the MetaboAnnotation package: https://rformassspectrometry.github.io/MetaboAnnotation/
• Repository of the CompoundDb package: https://rformassspectrometry.github.io/CompoundDb/

Session information

The R version and versions of used packages are listed below.

sessionInfo()

R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS
##
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
##
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
##
other attached packages:
[1] MsBackendMgf_1.2.0 Spectra_1.5.7 MetaboCoreUtils_1.3.5
[4] pander_0.6.4 MetaboAnnotation_0.99.3 CompoundDb_0.99.5
[7] AnnotationFilter_1.18.0 curl_4.3.2 xcms_3.16.1
[10] MSnbase_2.20.4 ProtGenerics_1.26.0 S4Vectors_0.32.3
[13] mzR_2.28.0 Rcpp_1.0.8 Biobase_2.54.0
[16] BiocGenerics_0.40.0 BiocParallel_1.28.3 knitr_1.37
[19] BiocStyle_2.22.0 rmarkdown_2.11
##
loaded via a namespace (and not attached):
[1] colorspace_2.0-2 rjson_0.2.21
[3] ellipsis_0.3.2 rprojroot_2.0.2
[5] XVector_0.34.0 fs_1.5.2
[7] GenomicRanges_1.46.1 base64enc_0.1-3
[9] clue_0.3-60 remotes_2.4.2
[11] affyio_1.64.0 DT_0.20
[13] bit64_4.0.5 fansi_1.0.2

18

https://jorainer.github.io/SpectraTutorials/
https://jorainer.github.io/SpectraTutorials/
https://rformassspectrometry.github.io/MsCoreUtils/
https://rformassspectrometry.github.io/MetaboCoreUtils/
https://rformassspectrometry.github.io/Spectra/
https://rformassspectrometry.github.io/MetaboAnnotation/
https://rformassspectrometry.github.io/CompoundDb/

[15] xml2_1.3.3 codetools_0.2-18
[17] ncdf4_1.19 doParallel_1.0.16
[19] cachem_1.0.6 impute_1.68.0
[21] robustbase_0.93-9 jsonlite_1.7.3
[23] dbplyr_2.1.1 cluster_2.1.2
[25] vsn_3.62.0 png_0.1-7
[27] BiocManager_1.30.16 compiler_4.1.2
[29] assertthat_0.2.1 Matrix_1.3-4
[31] fastmap_1.1.0 lazyeval_0.2.2
[33] limma_3.50.0 cli_3.1.1
[35] htmltools_0.5.2 prettyunits_1.1.1
[37] tools_4.1.2 gtable_0.3.0
[39] glue_1.6.1 GenomeInfoDbData_1.2.7
[41] affy_1.72.0 RANN_2.6.1
[43] dplyr_1.0.7 rsvg_2.1.2
[45] tinytex_0.36 MALDIquant_1.21
[47] vctrs_0.3.8 preprocessCore_1.56.0
[49] iterators_1.0.13 xfun_0.29
[51] stringr_1.4.0 ps_1.6.0
[53] lifecycle_1.0.1 XML_3.99-0.8
[55] DEoptimR_1.0-10 zlibbioc_1.40.0
[57] MASS_7.3-54 scales_1.1.1
[59] pcaMethods_1.86.0 MatrixGenerics_1.6.0
[61] parallel_4.1.2 SummarizedExperiment_1.24.0
[63] MassSpecWavelet_1.60.0 RColorBrewer_1.1-2
[65] yaml_2.2.2 memoise_2.0.1
[67] gridExtra_2.3 ggplot2_3.3.5
[69] MsFeatures_1.2.0 stringi_1.7.6
[71] RSQLite_2.2.9 highr_0.9
[73] foreach_1.5.1 pkgbuild_1.3.1
[75] GenomeInfoDb_1.30.1 rlang_1.0.0
[77] pkgconfig_2.0.3 matrixStats_0.61.0
[79] bitops_1.0-7 mzID_1.32.0
[81] evaluate_0.14 lattice_0.20-45
[83] purrr_0.3.4 ChemmineR_3.46.0
[85] htmlwidgets_1.5.4 bit_4.0.4
[87] processx_3.5.2 tidyselect_1.1.1
[89] plyr_1.8.6 magrittr_2.0.2
[91] R6_2.5.1 IRanges_2.28.0
[93] generics_0.1.2 DelayedArray_0.20.0
[95] DBI_1.1.2 pillar_1.6.5
[97] withr_2.4.3 MsCoreUtils_1.6.0
[99] RCurl_1.98-1.5 tibble_3.1.6
[101] crayon_1.4.2 utf8_1.2.2
[103] grid_4.1.2 blob_1.2.2
[105] callr_3.7.0 digest_0.6.29
[107] munsell_0.5.0

References
Nothias, Louis-Félix, Daniel Petras, Robin Schmid, Kai Dührkop, Johannes Rainer, Abinesh Sarvepalli,

Ivan Protsyuk, et al. 2020. “Feature-Based Molecular Networking in the GNPS Analysis Environment.”
Nature Methods 17 (9): 905–8. https://doi.org/10.1038/s41592-020-0933-6.

19

https://doi.org/10.1038/s41592-020-0933-6

Stoffel, Rainer, Michael A. Quilliam, Normand Hardt, Anders Fridstrom, and Michael Witting. 2021. “N-
Alkylpyridinium Sulfonates for Retention Time Indexing in Reversed-Phase-Liquid Chromatography-
Mass Spectrometry–Based Metabolomics.” Analytical and Bioanalytical Chemistry, December. https:
//doi.org/10.1007/s00216-021-03828-0.

Wishart, David S, AnChi Guo, Eponine Oler, Fei Wang, Afia Anjum, Harrison Peters, Raynard Dizon, et
al. 2021. “HMDB 5.0: The Human Metabolome Database for 2022.” Nucleic Acids Research 50 (D1):
D622–31. https://doi.org/10.1093/nar/gkab1062.

20

https://doi.org/10.1007/s00216-021-03828-0
https://doi.org/10.1007/s00216-021-03828-0
https://doi.org/10.1093/nar/gkab1062

	Installation instructions
	MS^1 annotation
	Annotation using m/z values
	Annotation using reference m/z and retention times
	Annotation using reference m/z and retention indices

	MS^2 annotation
	Working with data from other tools
	Package repositories and additional tutorials
	Session information
	References

