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Simulation study.  

To assess the performance of the sparse CCA and SOM methods, we conducted a simulation study. We 

generated two datasets, X and Y, corresponding, respectively, to transcriptomic and metabolomic data. 

To mimic biological data, we used several numbers of features, from 1000 and 100 to 12,000 and 775 for, 

respectively, transcriptomic and metabolomic matrices. A subset of variables in X was associated with 

a subset of variables in Y, and the remaining variables were simulated as noise. Simulated datasets 

consisted of ten individuals. This simulation study enabled us to assess if the sparse CCA and SOM 

methods can differentiate correlated variables from noisy variables. 

With the aim to generate an artificially simulated dataset, we used a real dataset to keep the baseline 

sources of variability. We used microarray transcriptomic data and NMR metabolomic data generated 

from ten individuals of an independent study that had previously been published (Montagner et al., 

2016). Then, we applied several steps to both datasets to define noisy features and add artificial effects 

to selected features.  

1. Subtraction of known sources of experimental variability using the RemoveBatchEffect function 

from the limma R package (Ritchie et al., 2015). 

2. Computation of inter and intra correlation (Pearson method) matrices between transcriptomic 

and metabolomic matrices. The obtained correlation coefficients help us define “correlated” 

(cor>=0.9) vs. “uncorrelated” (cor<0.9) features.  

3. Random simulation of datasets following the above steps: 

3.1. Random draw of 0.1*p “correlated” transcriptomic and 0.1*q “correlated” metabolomic 

features. 

3.2. Random draw of 0.9*p “uncorrelated” transcriptomic and “uncorrelated” 0.9*q 

metabolomic features. 

3.3. Generation of noisy features based on the multivariate normal distribution N(0, Σ). 

3.4. Addition of four artificial experimental effects (+3, -3, +1.3 and -1.3) to mimic biological 

condition to pFBio transcriptomic and qFBio metabolomic (respectively) “uncorrelated” and 

“correlated” features for half of the individuals (randomly sampled). 

 

The simulation scheme (steps 3.1 to 3.4) was repeated 100 times for each of 4 dataset dimensions (big, 

large, medium, and small). 

 

Table S1: Simulation design. 

 Transcriptomic dataset Metabolomic dataset 

Simulated dataset 

dimensions 

Number of 

variables (p) 

Number of 

variables with biological 

effect (pFBio) 

Number of 

variables 

(q) 

Number of 

variables with biological 

effect (qFBio) 

big 12000 100 788 10 

large 10000 85 700 10 

medium 5000 40 500 5 

small 1000 10 100 2 

 

The sparse CCA and SOM methods were evaluated using sensibility and specificity measures. 

Sensitivity (Se) corresponds to the proportion among correlated features (within and between ‘omic 

datasets) that were declared correlated. Specificity (Sp) corresponds to the proportion among non-

correlated features that were declared non-correlated (and are rightly not correlated). The sensitivity is 

a measure of how well the method is able to correctly identify correlated features, while the specificity 

measures how well the method can identify uncorrelated features. With binary decisions 

(correlated/uncorrelated), results can be displayed in a 2 x 2 table that cross classifies true status (e.g., 



features are correlated, yes/no) with predicted status (e.g., features are predicted to be correlated, 

yes/no), summarizing the performance of the method. The sensitivity and specificity are computed from 

Table S2. 

 

Table 2: Confusion matrix used to compute sensitivity and specificity. 

   
 

Se = TP/(TP+FN) et Sp = TN/(FP+TN).  

 

For the SOM method, a pair of features was considered as correlated when both features were classified 

into the same unit of the map. 

 

The R² value and the Mean Squared Error of Prediction (MSEP) were used to assess the performance of 

the O2PLS models. R² corresponds to the explained variance. MSEP (Mevik and Cederkvist, 2004) 

measures how well a model predicts. It is based on the squared difference in the predicted and observed 

values of the biological factor. The lower the MSEP is, the better predicts the model. MSEP was 

computed using leave-one-out cross-validation. 


