# Metabolomic Analysis of Small Extracellular Vesicles Derived from Pancreatic Cancer Cells Cultured under Normoxia and Hypoxia

This PDF file includes: S1 Materials and Methods Figure S1, S2 Table S1–3

### S1. Materials and Methods

#### 1.1. Isolation of Cellular RNA and mRNA Analyses

PANC-1 cells (ATCC, Manassas, VA, USA) were seeded in 6-well plates at  $2.0 \times 10^{5}$ cells/well and precultured in RPMI 1640 (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) containing 10% (v/v) fetal bovine serum (FBS, Biowest, Nuaillé, France), antibiotics (100 U/mL penicillin, 100 mg/mL streptomycin, and 0.25 mg/mL amphotericin B, Nacalai tesque, Kyoto, Japan) under normoxic conditions for 24 h. The cells were washed twice with Dulbecco's phosphate-buffered saline (D-PBS, Nacalai Tesque). Thereafter, the medium was changed to advanced RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA, USA) containing 2 mmol/L glutamine (Thermo Fisher Scientific) and antibiotics. The cells were then cultured for 48 h under hypoxic (1% O<sub>2</sub>) or normal oxygen conditions. After washing with D-PBS, the cells were sampled and stored at -80 °C. mRNA was extracted with TRIzol Reagent (Thermo Fisher Scientific) according to the manufacturer's protocol. For cDNA synthesis, a cDNA synthesis kit (ReverTra Ace  $\alpha$ , Toyobo, Osaka, Japan) was used. Quantitative real-time PCR was performed using TB Green Premix Ex Taq II (Takara Bio, Shiga, Japan) on a StepOnePlus Real-time PCR system (Thermo Fisher Scientific) according to the manufacturer's instructions. Quantitation was performed using the  $\Delta\Delta$ Ct method, with the expression of *RPL27* used as an internal reference. The primers used for real-time PCR are shown in Table S3.

#### 1.2. Immunoblot Analysis

Whole cells and sEVs were extracted using M-PER reagent (Thermo Fisher Scientific) containing protease inhibitor cocktails (Roche, Basel, Switzerland). Protein concentration in cells was measured by the Bradford method (Quick Start™ Bradford 1x Dye Reagent, Bio-Rad, Hercules, CA, USA). Protein concentration in sEVs was measured by Micro BCA™ Protein Assay Kit (Thermo Fisher Scientific). Equal amounts of each of protein samples were separated on a 4%−15% Mini-PROTEAN® TGX<sup>TM</sup> precast protein gel (Bio-Rad) and transferred to a PVDF membrane (Bio-Rad) using the Trans-Blot<sup>®</sup> Turbo<sup>™</sup> Transfer System (Bio-Rad). Membranes were blocked with the Blocking One reagent (Nacalai Tesque). Antibodies specific for glucose transporter 1 (GLUT1) (ab14683, Abcam, Cambridge, UK), anti-β-actin (sc-47778, Santa Cruz, Dallas, TX, USA), CD63 (ab8219, Abcam), CD81 (ANC-302-020, Ancell, Stillwater, MN, USA), Syntenin-1 (ab133267, Abcam), and Calnexin (Cell signaling Technology, Danvers, MA, USA) were used as primary antibodies. HRP-labeled anti-rabbit IgG antibody (Cytiva Marlborough, MA, USA) and anti-mouse IgG antibodies (Cytiva) were used as the secondary antibodies. The membranes were subjected to chemiluminescent analysis using the Clarity Western ECL Substrate (Bio-Rad) and the images were analyzed using the Image Quant LAS 4000 mini software (Cytiva).

1.3. Nanoparticle Tracking Analysis

We measured the number of particles and size distribution by nanoparticle tracking analysis (NanoSight LM10, Malvern Analytical, Malvern, UK) (biological n = 3, technical n = 3).

## 1.4. miRNA Analysis of sEVs

Isolation of exosomal miRNAs was performed using the miRNeasy Mini Kit (Qiagen, Venlo, Netherlands). The sEV pellets were dissolved in 100  $\mu$ L of physiological saline. Five hundred microliters of QIAzol lysis reagent (Qiagen) was added to the sample. After 5-min of incubation, 5  $\mu$ L of 100 pmol/L *syn-cel-miR-39* (Qiagen) was added to the tube as a spike-in control for losses in preparation. The subsequent steps were performed according to the manufacturer's instructions. For cDNA synthesis, the Taqman MicroRNA Reverse Transcription Kit (Thermo Fisher Scientific) was used. Quantitative real-time PCR was performed using the TaqMan MicroRNA Assay (Thermo Fisher Scientific) and Taq-Man Universal PCR Master Mix, no AmpErase UNG (Thermo Fisher Scientific) on a StepOnePlus Real-time PCR system (Applied Biosystems) according to the manufacturer's instructions. Quantitation was performed using the  $\Delta\Delta$ Ct method, with synthetic spike control (*syn-cel-miR-39*) used as an invariant control. miRNA data were normalized by the number of particles determined by NanoSight analysis.

#### Transmission Electron Microscopy

Transmission electron microscopy (TEM) analysis was performed by Tokai Electron Microscopy, Inc. The sEV samples were absorbed onto carbon-coated copper grids (400 mesh) and were stained with 2% phosphotungstic acid solution (pH 7.0) for 15 s. The grids were observed using a transmission electron microscope (JEM-1400 plus, JEOL Ltd., To-kyo, Japan) at an acceleration voltage of 100 kV. Digital images were taken with a CCD camera (EM-14830RUBY2, JEOL Ltd.).



**Figure S1.** Validation of small extracellular vesicles (sEVs) derived from PANC-1 cells cultured under normoxia and hypoxia. Immunoblotting of CD63, CD81, syntenin-1, and calnexin in PANC-1 cells and sEVs under normoxia and hypoxia. sEV markers, CD63, CD81, and syntenin-1; EV negative protein marker, calnexin. The protein content was 10 µg for the whole cell lysate (WCL) sample and 1.5 µg for the sEV sample.



**Figure S2.** Response of PANC-1 cells to hypoxia. (A) Expression of hypoxia-related mRNAs in PANC-1 cells under normoxia (blue) and hypoxia (orange). Gene expression was determined by real-time PCR. Values are normalized to normoxia. (B) Immunoblotting of GLUT1 in PANC-1 cells under normoxia and hypoxia.  $\beta$ -Actin was used as a loading control.

| Metabolite                | KEGG Pathway                                     |  |
|---------------------------|--------------------------------------------------|--|
| Inosine                   | Purine metabolism                                |  |
| N,N-dimethylglycine       | Glycine, serine, and threonine metabolism        |  |
| Cytidine                  | Pyrimidine metabolism                            |  |
| Uridine                   | Pyrimidine metabolism                            |  |
| Guanosine                 | Purine metabolism                                |  |
| Citrulline                | Arginine biosynthesis                            |  |
| Hypoxanthine              | Purine metabolism                                |  |
| Gly Leu                   | _                                                |  |
| Xanthine                  | Purine metabolism                                |  |
| Hexylamine                | _                                                |  |
| 2-Deoxyribose 1-phosphate | Pyrimidine metabolism, Pentose phosphate pathway |  |

Table S1. List of metabolites detected only in small extracellular vesicles (sEVs).

| Cells    |                               | sEVs                                                                              |                               |                                                                                       |
|----------|-------------------------------|-----------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Ran<br>k | Metabolite                    | KEGG pathway                                                                      | Metabolite                    | KEGG Pathway                                                                          |
| 1        | Phosphorylcholine             | Glycerophospholipid metabolism, Choline metabolism in cancer                      | Phosphorylcholine             | Glycerophospholipid metabolism, Choline metabolism in cancer                          |
| 2        | Glutathione (reduced)         | Glutathione metabolism, Cysteine and methionine metabolism                        | Glycerophosphory-<br>lcholine | Glycerophospholipid metabolism, Choline metabolism in cancer                          |
| 3        | Glu                           | Alanine, aspartate, and glutamate metabolism                                      | Arg                           | Arginine and proline metabolism                                                       |
| 4        | Ethanolamine phos-<br>phate   | Glycerophospholipid metabolism                                                    | Glu                           | Alanine, aspartate, and glutamate metabolism                                          |
| 5        | Glycerophosphory-<br>lcholine | Glycerophospholipid metabolism, Choline metabolism in cancer                      | Lys                           | Lysine biosynthesis                                                                   |
| 6        | Asp                           | Alanine, aspartate, and glutamate metabolism                                      | Ethanolamine phos-<br>phate   | Glycerophospholipid metabolism                                                        |
| 7        | Gln                           | Alanine, aspartate, and glutamate metabolism, Central carbon metabolism in cancer | Inosine                       | Purine metabolism                                                                     |
| 8        | Gly                           | Glycine, serine, and threonine metabolism                                         | UDP-N-acetylglucosa-<br>mine  | Amino sugar and nucleotide sugar metabolism                                           |
| 9        | Pro                           | Arginine and proline metabolism                                                   | ADP                           | Oxidative phosphorylation, Purine metabolism                                          |
| 10       | Lactic acid                   | Glycolysis, Gluconeogenesis, Central carbon metabolism in cancer                  | Gln                           | Alanine, aspartate, and glutamate metabolism, Central carbon metabolism in cancer     |
| 11       | ATP                           | Oxidative phosphorylation, Purine metabolism                                      | Glucose 1-phosphate           | Glycolysis, Pentose, and glucuronate interconversions                                 |
| 12       | Gly Gly                       | _                                                                                 | Ala                           | Alanine, aspartate, and glutamate metabolism, Cysteine and methio-<br>nine metabolism |
| 13       | Asn                           | Alanine, aspartate, and glutamate metabolism                                      | GDP                           | Purine metabolism                                                                     |
| 14       | N-Acetylaspartate             | Alanine, aspartate, and glutamate metabolism                                      | UMP                           | Pyrimidine metabolism                                                                 |
| 15       | UDP-N-acetylglucosa-<br>mine  | Amino sugar and nucleotide sugar metabolism                                       | N,N-dimethylglycine           | Glycine, serine, and threonine metabolism                                             |
| 16       | UTP                           | Pyrimidine metabolism                                                             | UDP-glucose                   | Pentose and glucuronate interconversions                                              |
| 17       | Citric acid                   | Citrate cycle (TCA cycle), Central carbon metabolism in cancer                    | Gly                           | Glycine, serine, and threonine metabolism                                             |
| 18       | Creatine                      | Glycine, serine, and threonine metabolism, Arginine and proline me-<br>tabolism   | Cytidine                      | Pyrimidine metabolism                                                                 |
| 19       | beta-Ala                      | beta-Alanine metabolism, Propanoate metabolism                                    | Uridine                       | Pyrimidine metabolism                                                                 |
| 20       | Malic acid                    | Citrate cycle (TCA cycle), Central carbon metabolism in cancer                    | UDP                           | Pyrimidine metabolism                                                                 |

Table S2. The KEGG pathways associated with top 20 hydrophilic metabolites in cells and small extracellular vesicles (sEVs) under normoxia.

 Table S3. Primer sequences for real-time PCR assays.

| Gene Name | Forward Primer Sequence (5'-3') | <b>Reverse Primer Sequence (5'-3')</b> |
|-----------|---------------------------------|----------------------------------------|
| GLUT1     | ATCGTCGTCGGCATCCTCAT            | TGTCCCGCGCAGCTTCTTTA                   |
| LDHA      | TATCTTGACCTACGTGGCTT            | CATTAGGTAACGGAATCGGG                   |
| VEGF      | ACCATGAACTTTCTGCTGTC            | TACTCCTGGAAGATGTCCAC                   |
| CA9       | GGATCTACCTACTGTTGAGGCT          | CATAGCGCCAATGACTCTGGT                  |
| EGLN3     | CTGGGCAAATACTACGTCAAGG          | GACCATCACCGTTGGGGTT                    |
| HK2       | GAGCCACCACTCACCCTACT            | CCAGGCATTCGGCAATGTG                    |
| PGK1      | TGGACGTTAAAGGGAAGCGG            | GCTCATAAGGACTACCGACTTGG                |
| PFKFB3    | TTGGCGTCCCCACAAAGT              | AGTTGTAGGAGCTGTACTGCTT                 |
| PFKFB4    | TCCCCACGGGAATTGACAC             | GGGCACACCAATCCAGTTCA                   |
| BNIP3     | CAGGGCTCCTGGGTAGAACT            | CTACTCCGTCCAGACTCATGC                  |
| RPL27     | CTGTCGTCAATAAGGATGTCT           | CTTGTTCTTGCCTGTCTTGT                   |