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Fig S1. Schematic representation of Hermia’s fouling model mechanisms: (a) complete fouling, (b) 

intermediate fouling, (c) standard fouling, (d) cake layer fouling and (e) combined fouling model 

distribution during the process 
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Fig S2: Lab scale membrane system 
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Table S1: PVDF membrane characteristics and operational conditions  

 

 

 

 

 

 

 

 

Table S2: Feed solution characteristics 

 

 

 

  

Parameters Detail 
Membrane pore size 0.1µm 
Outer diameter 1.4mm 
Inner diameter 0.6mm 
Membrane area 0.1884m2 
pH 8.5-9.5 
Operating temperature 18±30C 
Flux range 40-200 lmh 

Sample name Feed solution Particle size (μm) 
S1 HA + Ca+2  0.213 ± 0.11 
S2 Al + Mn + Fe + Ca+2 +Kaolin 0.156 ± 0.08 
S3 HA+ Al + Mn + Fe + Ca+2 +Kaolin 0.268 ± 0.13 



 

 

Fig. S3 : Raise in TMP of membrane under testing for raise in flux with 20 LMH from 40 – 200 LMH 
for DI water. 

  



1. Fitting curves for modified fouling model for the 40lmh 
1.1.1hr filtration  

Fig. S4: Represents the fitted fouling curve for the fouling solution at 40lmh for 1hr filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1,2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 



1.2.Cycle 1 filtration (40lmh) 

Fig. S5: Represents the fitted fouling curve for the fouling solution at 40lmh for cycle 1 filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1,2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 

  



1.3.Cycle 2 filtration (40 lmh) 

Fig. S6: Represents the fitted fouling curve for the fouling solution at 40lmh for cycle 2 filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1,2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 

  



1.4.Cycle 3 filtration (40lmh) 

Fig. S7: Represents the fitted fouling curve for the fouling solution at 40lmh for cycle 3 filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1,2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 

 



2. Fitting curves for modified fouling model for the 80lmh 
2.1. 1hr filtration  

Fig. S8: Represents the fitted fouling curve for the fouling solution at 80lmh for 1hr filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1,2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 

  



2.2.Cycle 1filtration (80 lmh) 

Fig. S9: Represents the fitted fouling curve for the fouling solution at 80lmh for cycle 1 filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 

  



2.3. Cycle 2 filtration (80 lmh) 

Fig. S10: Represents the fitted fouling curve for the fouling solution at 80lmh for cycle 2 filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 

  



2.4. Cycle 3 filtration (80lmh) 

Fig. S11: Represents the fitted fouling curve for the fouling solution at 80lmh for cycle 3 filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 

  



3. Fitting curves for modified fouling model for the 120lmh 
3.1. 1hr filtration 

Fig. S12: Represents the fitted fouling curve for the fouling solution at 120lmh for 1hr filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 

  



3.2. Cycle 1 filtration (120 lmh) 

Fig. S13: Represents the fitted fouling curve for the fouling solution at 120lmh for cycle 1 filtration; a: 
S1 solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, 
standard and cake layer blocking) 

  



3.3.Cycle 2 filtration (120 lmh) 

Fig. S14: Represents the fitted fouling curve for the fouling solution at 120lmh for cycle 2 filtration; a: 
S1 solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, 
standard and cake layer blocking) 

  



3.4.Cycle 3 filtration (120 lmh) 

 Fig. S15: Represents the fitted fouling curve for the fouling solution at 120lmh for cycle 3 filtration; a: 
S1 solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, 
standard and cake layer blocking) 

  



4. Fitting curves for modified fouling model for the 160lmh 
4.1. 1hr Filtration  

Fig. S16: Represents the fitted fouling curve for the fouling solution at 160lmh for 1hr filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 

  



4.2.Cycle 1 filtration (160 lmh) 

Fig. S17: Represents the fitted fouling curve for the fouling solution at 160lmh for Cycle 1 filtration; a: 
S1 solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, 
standard and cake layer blocking) 

  



4.3.Cycle 2 filtration (160 lmh) 

Fig. S18: Represents the fitted fouling curve for the fouling solution at 160lmh for Cycle 2 filtration; a: 
S1 solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, 
standard and cake layer blocking) 

  



4.4.Cycle 3 filtration (160 lmh) 

Fig. S19: Represents the fitted fouling curve for the fouling solution at 160lmh for Cycle 3 filtration; a: 
S1 solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, 
standard and cake layer blocking) 

  



5. Fitting curves for modified fouling model for the 120lmh 
5.1.1hr Filtration  

Fig. S20: Represents the fitted fouling curve for the fouling solution at 200lmh for 1hr filtration; a: S1 
solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, standard 
and cake layer blocking) 

  



5.2.Cycle 1 filtration (160 lmh) 

Fig. S21: Represents the fitted fouling curve for the fouling solution at 200lmh for Cycle 1 filtration; a: 
S1 solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, 
standard and cake layer blocking) 

  



5.3.Cycle 2 filtration (160 lmh) 

Fig. S22: Represents the fitted fouling curve for the fouling solution at 200lmh for Cycle 2 filtration; a: 
S1 solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, 
standard and cake layer blocking) 

  



5.4.Cycle 3 filtration (160 lmh) 

Fig. S23: Represents the fitted fouling curve for the fouling solution at 200lmh for Cycle 3 filtration; a: 
S1 solution; b: S2 solution; c: S3 solution (subscript 1, 2,3 & 4 represents complete, intermediate, 
standard and cake layer blocking) 



Table S3: Summary of the foulants associated with membrane processes used for surface water treatment.  1 

Membranes 
Operational 
Parameters 

Foulants 
Results Reference 

Organic Inorganic 

PVDF  pH:  7: Temp:  
23o 

HA Ca2+, Mg2+  • There is a decrease in the flux of 77% and 33% for Ca2+ and 53% and 72% for Mg2+ at 
ionic strengths of 1 mM and 50 mM, respectively 

[1] 

CA, PES  pH: 6.8 ± 0.2;; 
Temp: 25oC; 

HA Ca2+, Mg2+  • The flux decline rate is higher for PES (0.39 for Ca; 0.44 for Mg) than for CA (0.63 for 
Ca; 0.80 for Mg) due to the strong hydrophobic interactions of the complexes formed 
from the HA–HA-divalent cation reaction because PES is more hydrophobic (contact 
angle: 91.9o).  

[2]  

PES (20 kDa) P: 105 ± 2.07 
kPa  

DOC Ca2+; Mg2+  • Intermolecular bridging of Ca2+, Mg2+ ion between NOM leads to severe fouling due to 
strong adhesion forces, resulting in the severe decline in membrane flux..  

[3] 

PVDF (0.22 μm) pH: 6.5–7.5;      
Temp: 35–40oC 

HA Fe3+ • Fe is not effective as a coagulant for the removal of viruses from surface water even at 
high dosages of 13 mg.L-1.  

[4] 

PVDF (0.1 μm),  pH: 12; Temp: 
20oC 

DOC Al3+ , Mn2+; Fe3+; 
Ca2+ 

• Evaluation of foulant removal by particle size is carried out, showing that Al and Fe have 
larger particle sizes than Mn, so they were efficiently removed. 

[5] 

PA (0.6 kDa) pH: 6.5–7;        
Temp: 22±3oC 

HA, FA Ca2+ • PA membranes are used to analyze DOM fouling with and without Ca2+. Membrane 
fouling is not reported only according to hydrophilicity/hydrophobicity, but the surface 
chemistry is also considered to determine the strength of foulant−membrane interactions. 

[6] 

PES (100 kDa) pH: 7.5 ±0.1;      
Temp: 21± 2oC 

HA; PAC Ca2+ • In the presence of calcium, the TFI and HIFI are at least 2 times higher in PAC+HA than 
in PAC-treated HA. 

[7] 

PVDF pH: 7;               
Temp: 20oC 

DOC Na+1 ; Mg2+ • HA fouling with Na2+ is dominated by electrostatic forces, leading to the formation of a 
thick layer of HA on the surface with an increase in concentration. Mg2+ exhibits different 
behavior, with an increase in the concentration to a critical value causing the aggregation 
of HA due to electrostatic forces 

[8] 

PES, CA, PVDF; 
(100 kDa) 

Temp: 21 ± 2oC; 
pH: 7.5 ± 0.1 

HA; SA 
BSA;PAC 

Ca2+ • The mass of PAC increases from 0.65 and 0.41 g.m-2 to 3.33 and 2.65 g.m-2 when Ca2+ 
combines with HA and SA, respectively, due to the interaction between the carboxylate 
moieties of HA and SA with Ca2+, further strengthening adsorption.  

[9] 

PVC (50 kDa) pH: 6.8  ± 0.1; 
Temp: 23-25oC 

HA Ca2+ • HA fouling is dependent on Ca2+ interactions. As the Ca2+ concentration increases, 
membrane fouling increases due to chelation and a decrease in the interaction energy with 
HA.  

[10] 

PVDF pH:8 
Temp: 23-25oC 

HA Ca2+, Al3+, Mn2+, 
Fe3+ 

• Applied the participation equation to elucidate the dual behavior of Al3+ with HA and 
Ca2+, while bridging and agglomeration with other foulants. 

This study 
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