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Supplementary materials 
S1 Solutions 

Monosodium phosphate (NaH2PO4) is a salt of the tribasic orthophosphoric acid. The latter 

has the following structure  

 

The proton-transfer reactions between water molecules and polybasic acid species (the 

cases of phosphoric with general formula HnA, where the maximum value of n is 3) are presented 

as follows: 
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Calculation of the mole fraction of ampholyte species in solution and membrane  



Fig. S1 shows the distribution of species of the polybasic acids under study (in mole 

fractions) vs. the pH of the solution. These distributions are calculated using the appropriate 

equilibrium equations and the pKa values presented in Table S1. 

 

Table S1 

The values of pKa (at 25 oC) of acids [1], various species of which may be present in the membrane 

systems under study. 

Substance pKa1 pKa2 pKa3 

H3PO4 2.12 7.21 12.34 

 

 
Fig. S1. Speciation diagrams: distribution of the phosphoric acid species (in mole fractions) vs. 

the pH of the solution. 

 

S2. The Lévêque limiting current density and diffusion layer thickness.  

S2.1. The case of a binary electrolyte (NaH2PO4, pH 4.6±0.1) 

 The Leveque equation [(S7) and equation (S8)] are used to estimate the theoretical limiting 

current, ilimLev, and the thickness of the depleted diffusion layer, δLev: 
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Here z1 is the charge number of counterion 1, F is Faraday constant, D и t1 are the diffusion 

coefficient of the electrolyte and the electromigration transfer number of the counterion at infinite 

dilution of the solution. The transport number of counterions in the membrane, T1, was considered 
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equal to one; c1 is its molar concentration in the feed solution entering the DC, V0 is the average 

linear velocity of the solution flowing between the membranes forming the DC, h is the distance 

between the membranes, L is the length of the channel. These equations were obtained for the 

diffusion-convection heat transfer [2] and after were adapted to diffusion-convection mass transfer 

in electrode [3] and ion exchange membrane [4] systems. For 1: 1 electrolyte and laminar 

hydrodynamic regime. Note that the value 0.71 for the factor in the right-hand part of Eq. (S8) is 

given by the numerical solution of the 2D convection-diffusion problem whose asymptotic 

solution is expressed by Eq. (S7). However, often [5,6] Eq. (S8) is used with a factor 0.68, which 

is obtained using the Peers equation [6] and the approximation of Eq. (S7), where the second term 

in the brackets is neglected. It is worth noting that this equation is applicable only for relatively 

short channel lengths ( 2
00.02 /L h V D≤ ) [4].  

S2.2. The case of a mixed electrolyte solution  

 

Let us consider a ternary electrolyte composed of two kinds of counterions, 1 and 2, and 

one kind of coion, a later on, we consider a solution of this ternary electrolyte in a diffusion layer 

adjacent to an ion-exchange membrane.  

The Nernst-Planck equations for these ions read: 
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After dividing each of the equations (S8)-(S9) by Di, summing the results, and taking into account 

the electroneutrality condition  
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we find: 
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The last equality in Eq. (S12) is obtained after eliminating cA using Eq. (S11). Since ji do 

not change along the coordinate x in a stationary state, Eq. (S12) can be easily integrated over the 

thickness of the diffusion layer. If the current density is equal to the limiting one, the 

concentrations of all ions at the membrane surface are very close to zero. In this case, we can write: 
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The limiting flux density of counterion i can be represented as [7]:  
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The first term in Eq. (S14) shows what value the limiting flux density of counterion i would 

have if the membrane were impermeable to coions. The second term reflects the additional value 

of the counterion flux caused by the transfer of coions: when the coions appear in the depleted 

layer, they create an additional electric field that attracts counterions from the solution. This effect 

is called exaltation in the literature [7,8]. 

From Eq. (S14), it is easy to obtain an expression for the limiting current density: 
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is the limiting current density in the case of a membrane impermeable to coions. The term 

( )lim lim/A AT t i  in Eq. (S17) can be interpreted as the sum of the current carried by the coions ( )limAT i⋅

, and the exaltation current of counterions. From Eq. (S17), we obtain:  
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The resulting Eq. (S18) generalizes the well-known Peers equation for a single electrolyte. 

Indeed, setting 0
2 0c =  gives: 
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is the electrolyte diffusion coefficient. 

For a mixture of two single electrolytes with a common coion (a ternary electrolyte), one can 

obtain equation (S21), which is similar to equation (S19) [9]:  
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with Dter, the effective diffusion coefficient of ternary electrolyte, 
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=  is the equivalent fraction of counterion i in the bulk solution. It is easy to see that in 

the case, where the concentration of counterion 2 is zero, 0
2 0c = , Eq. (S22) is reduced to Eq. (S20).  

For a single electrolyte, the Leveque equation (Eq. S7), allows calculating the limiting 

current density and diffusion layer thickness as functions of the (single) electrolyte diffusion 

coefficient, solution flow rate, distance between the membranes and membrane length. It can be 

assumed that this equation remains valid in the case of ternary electrolyte, if the value determined 

by Eq. (S22) is used as the electrolyte diffusion coefficient. Under this assumption, we can write  
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Table S2 summarizes some of the characteristics of the studied electrolytes, which are used to 

calculate the limiting currents. 

 

Table S2  

Some of the characteristics of the studied electrolytes, which are used to calculate the limiting 

currents. 

 

Electrolyte  Diffusion coefficients at infinite dilution, 
Di×105, cm2 s-1 

Transport numbers at infinite 
dilution, ti 

cation 
anion 

electrolyte cation 
anion 

singly 
charged 

doubly 
charged 

singly 
charged 

doubly 
charged 

NaCl  
1.334 

[1] 

2.032 [1]  1.61  0.396 0.604  
NaH2PO4 0.959 [1]  1.12 0.581 0.419  
Na2HPO4 - 0.759 [1]    0.456 

 

Calculations made using equation S22 give the following value Dter =1.29×105, cm2 s-1 It is 

calculated under the assumption that Na+ is the only coion. 

 



S3. The effective transport numbers, Ti and partial current numbers ii of counter ions  

 

The effective transport numbers, Ti and partial current numbers ii of counter ions were 

found using the cell presented in Fig. 2 (the main text). The difference with the measurements of 

current voltage curves is in the fact that desalination compartment (14) is fed from additional tank 

(2). The volume of the solution circulating through the desalination compartment (DC) and tank 

(2) is 0.1 L, which is essentially less than the volume of the solution circulating through tank (1), 

the concentration and electrode compartments. During one experimental run, in conditions where 

the potential difference between the Luggin capillaries, Δϕ, is kept constant, the salt concentration 

in the desalination circuit decreased with time. Since the rates of generation of H+ and OH− ions 

at the CEM and AEM forming the desalination compartment are different, pH of the feed solution 

changed with time. Namely, it became acidic in the studied cases. In order to keep a constant pH 

value of the feed solution, a 0.1M solution of NaOH was added into tank (2) through microcapillary 

(13). The rate of decrease in the salt concentration of the solution in tank (2), dC/dt, is found by 

using the measured values of conductivity, κ, of this solution (using submersible conductometric 

cell (12)) and taking into account the known constant pH value. The effective transport numbers, 

Ti, of salt and water ions in the anion-exchange membrane under study (AEM* in Fig. 2) are found 

by knowing the rate of concentration decrease dC/dt, and the rate of addition of NaOH into tank 

(2); the mass balance equations are applied in the calculations.  Simultaneously, the partial current 

density of species “i”, ii, is determined as ii =i Ti. 

For the desalted NaCl solution, the material balance of the transport of counterions in the 

desalting channel is described by Eq. (S24), if we assume that the difference in electrolyte 

concentration in different parts of the installation (tube, cell, vessel) is insignificant: 
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T
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Here 𝑇௜஼ாெ, 𝑇௜АாМ are the effective numbers of counterions in the cation-exchange and anion-

exchange membranes that form the desalting channel; S is the active (polarizable) surface area of 

the membrane under study; n is the number of desalination chambers; is the volume of the 

solution in the desalting channel; CT and TV  are concentration and volume of the titrant (NaOH) 

added in the desalination path. The first term in the right-hand side of Eq. (S24) describes the 

decrease in the concentration of the electrolyte in the DC due to the transfer of counterions through 

the corresponding membranes; the second term of the equation describes the addition of sodium 

ions with the titrant. 

V



In the case when the transfer of salt co-ions through membranes can be neglected (since 

0.02 M solutions used in the study are quite diluted), it follows from Eq. (S24):  
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CEМ Na Na T T
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F F S dt S dt

+ +

+ = = ≈ − +  (S25) 

АEМ АEМ
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F F S dt
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After the effective transfer numbers of salt counterions have been determined, it is easy to find the 

effective transfer numbers of protons (CEM) and hydroxyl ions (AEM): 

1CEМ CEМ
H Na

T T+ += − , 1АEМ АEМ
OH Cl

T T− −= −  (S27) 

In the case of desalting a NaH2PO4 solution, the partial currents of protons and sodium ions 

in the CEM are calculated using Eqs. (S26) and (S27). 

 To determine the partial currents of 2 4H PO − , 2
4HPO − , 3

4PO −   and OH −  ions in an AEM, 

the material balance equations were composed on the basis of the following assumptions. 

1. The total flux of pentavalent phosphorus (P) in the AEM is equal to the sum of all fluxes 

of phosphorus-containing ions entering the AEM from the desalination channel. Since pH in the 

intermediate tank, from which the solution enters the DC, is 4.6, only 2 4H PO −  ions are present in 

it (Fig. S1). In this case: 
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where the “AEM” and “s” indices refer to the anion-exchange membrane and the solution on its 

side adjacent to the depleted diffusion layer (Fig. 6 in the main text), respectively. The value of 

2 4

s
H PO

j −  can be easily determined experimentally from the rate of concentration decrease in the 

desalting stream (where the pH value is kept constant) using an equation similar to Eq. (S26): 

2 4

2 4

NaH POs
H PO

dCVj
S dt− = −  (S29) 

It follows from Fig. S1 that only two types of phosphorus-containing particles can be 

simultaneously present in the AEM, namely 2 4H PO −  and 2
4HPO −  or 2

4HPO − and 3
4PO − . The 

concentration of other particles in each of the three pH ranges is very low and they can be 

neglected. A third pair of 3
4PO − and OH −  ions can coexist at pH > 13. 

It should be noted that protons are co-ions and are excluded from the AEM due to the 

Donnan effect [10]. Therefore, the pH of the internal membrane solution is 1–2 units higher than 

the pH of the external solution [11]. It follows from the Donnan equation that the electrostatic 

exclusion of co-ions increases with dilution of the external solution [11]. The results of 



mathematical simulation, which take into account the values of the protonation–deprotonation 

constants of orthophosphoric acid particles (Table S1) and the Donnan potential of the AEM [11], 

show that as the current density in the membrane system increases, the solution in contact with the 

surface of the AEM from the depleted diffusion layer becomes more and more diluted. In this case, 

the concentration of H+ ions in the near-surface layer of the membrane decreases, and the pH of 

this layer increases. At a relatively low current density (low concentration polarization), the pH of 

the near-surface AEM layer is relatively low, and this layer contains 2 4H PO −  and 2
4HPO − ions. 

With an increase in the current density, the pH of the near-surface layer of the AEM increases; it 

is enriched first with 3
4PO − and then with OH − . 

In the pH range from 5 to 10 (relatively low current densities), when there are only 2 4H PO −  

and 2
4HPO − ions in the AEM, the total current density, i, is determined by the transfer of only these 

ions: 

2
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and, in accordance with Eq. (S29), 
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In this case, the partial currents of singly and doubly charged phosphorus-containing ions can be 

found by the following equations: 
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In the pH range from 10 to 13.5 (high current densities), we find in a similar way: 
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4 2 4

2 3AEM s
HPO H PO
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( )3
4 2 4

3 2AEM s
PO H PO
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Coefficients «2» and «3» in Eqs. (S32) – (S35) correspond to electric charges 2
4HPO

z − and 3
4PO

z − . 

At higher current densities, when doubly charged ions are transformed into triply charged 

ones ( 2 2
4 4

/ 0
HPO HPO

T i i− −= = ), and the pH of the surface layer of the AEM exceeds 13.5, the current 

in the membrane is determined by the transfer of 3
4PO − and OH − . The partial currents of these 

ions are found as: 
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The partial flux of protons entering the depleted diffusion layer (DDL) is: 

2 3
4

2s АEМ АEМ
H HPO PO

j j j+ − −= +  (S38) 

Taking into account that k k ki j z F= , the partial current density of H+ ions in the depleted diffusion 

layer at the membrane surface is: 

2 3
4 4

2
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АEМ АEМ
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H
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Note that the iSH+ values are not difficult to find if the concentration (CT) and flow rate of the titrant 

(WT), continuously added to the vessel of the experimental setup are known (Fig. 6 in the main 

text). In this case, the equation for calculating iSH+ is: 

s T T
H

FW dCi
S dt+ = −       (S40) 

Eq. (S40) is derived under the assumption that all protons entering the solution from the 

AEM/solution interface are carried out by the fluid flow from the desalination channel. This 

equation is convenient to use, if the solution entering the desalting channel simultaneously contains 

not one, but several anions (solutions of tartaric and citric acid salts), and the calculation of the 

partial fluxes of these anions in the membrane is difficult. The confidence interval for determining 

the effective transport number of counterion in membrane for a given current density is equal to ± 

0.03. 
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