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Table S1. Details of simulation calculations. 

MD Simulation 

MD simulations were performed using Gromacs5.0 software [1]. The charge of the 

carbon atom at the edge of GQDs was set to +1.15e; the charge of the hydrogen atom con-

nected to the carbon atom was set to -1.15e, and the remaining carbon atom charge was 

considered neutral [2]. The relevant parameters of GQDs, including the harmonic bond 

potentials of C-C and C-H, the harmonic angles of C-C-H and C-C-C, the harmonic dihe-

dral potential, and Lennard-Jones (LJ), were taken from ref [3]. LJ and charge parameters 

are listed in Table 2.These parameters have been successfully used to explore the interac-

tion between GQDs and DNA, and the transmembrane transport of GQDs [2,4–7]. All 

systems were subjected to 50,000 steps of energy minimization and 1 ns pre-equilibration 

before the MD simulation. All bond lengths and all angles involving hydrogen atoms were 

constrained using the LINCS algorithm. The NPT ensemble was used in the simulation 

with a constant temperature of 314 K imposed by a Berensdsen thermostat and 1 bar of 

pressure controlled by a semi-isotropic Parrinello−Rahman barostat. The cutoff for the 

nonbonded van der Waals interaction was set by a switching function starting at 1.0 nm 

and reaching zero at 1.2 nm. The long-range electrostatic interaction was calculated by 

particle mesh Ewald (PME) summation, with a cutoff of 1.2 nm for the separation of the 

direct and reciprocal space summation.  

System No. of atoms 
No. of water 

molecules 
Simulation method GQD:lipid Time (ns) 

GQDs-POPC 117,653 26,939 MD 1:274 200 

GQDs-DOPE 126,576 29,624 MD 1:316 200 

GQDs-POPE 129,756 27,902 MD 1:342 200 

GQDs-POPE-LD 138669 31933 MD 1:342 200 

GQDs-POPC 117,653 26,939 SMD 1:274 10 

GQDs-DOPE 126,576 29,624 SMD 1:316 10 

GQDs-POPE 129,756 27,902 SMD 1:342 10 

GQDs-POPE-LD 138669 31933 SMD 1:342 10 

GQDs-POPC 117,653 26,939 PMF 1:274 S*10 

GQDs-DOPE 126,576 29,624 PMF 1:316 S*10 

GQDs-POPE 129,756 27,902 PMF 1:342 S*10 

GQDs-POPE-LD 138669 31933 PMF 1:342 S*10 
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Table S2. The LJ and charge parameters used in the MD  

Element C(sp2) CCH HCH 

ε(kcal/mol) 0.0859 0.046 0.0301 

σ(Å) 3.3997 2.985 2.42 

q(e) 0 −0.115 0.115 

Reference [8] [9] [9] 

 

  

Figure S1. Changes in energy and temperature of the system. 

  

Figure S2. The average force (PMF) potential of GQDs transport through the membrane. The green 

dotted line indicates the two boundaries of the cell membrane. 
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