Supplementary Information

Cytotoxic Polyketide Metabolites from a Marine Mesophotic Zone Chalinidae Sponge-Associated Fungus *Pleosporales* sp. NBUF144

Jing Zhou ¹, Hairong Zhang ¹, Jing Ye ², Xingxin Wu ², Weiyi Wang ³, Houwen Lin ⁴, Xiaojun Yan ¹, J. Enrico H. Lazaro ⁵, Tingting Wang ^{1,*}, C. Benjamin Naman ¹, Shan He ^{1,*}

- ¹ Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315800, China
- ² State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- ³ Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- ⁴ Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- ⁵ National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon, 1101, Philippines
 - * Correspondence: wangting1@nbu.edu.cn (T.W.); heshan@nbu.edu.cn (S.H.)

Contents

Figure S1.	LC–MS/MS derived molecular network of organic extracts produced fror	n 80
fungal cultures (40 from shallow reef sponges, 40 from mesophotic zone sponges). Single		
node cluste	ers, or self-loop nodes, were excluded for brevity	2
Figure S2	¹ H NMR spectrum of compound 1 (600 MHz, CDCl ₃)	3
Figure S3	¹³ C NMR spectrum of compound 1 (150 MHz, CDCl ₃)	4
Figure S4	DEPT135 spectrum of compound 1 (150 MHz, CDCl ₃)	5
Figure S5	¹ H- ¹ H COSY spectrum of compound 1	6
Figure S6	HSQC spectrum of compound 1	7
Figure S7	HMBC spectrum of compound 1	8
Figure S8	NOESY spectrum of compound 1	9
Figure S9	¹ H NMR spectrum of compound 2 (600 MHz, CDCl ₃)	11
Figure S10	¹³ C NMR spectrum of compound 2 (150 MHz, CDCl ₃)	12
Figure S11	DEPT135 spectrum of compound 2 (150 MHz, CDCl3)	13
Figure S12	¹ H- ¹ H COSY spectrum of compound 2	14
Figure S13	HSQC spectrum of compound 2	15
Figure S14	HMBC spectrum of compound 2	16
Figure S15	NOESY spectrum of compound 2	17

Figure S1. LC-MS/MS derived molecular network of organic extracts produced from 80 fungal cultures (40 from shallow reef sponges, 40 from mesophotic zone sponges). Single node clusters, or self-loop nodes, were excluded for brevity.

Figure S2 ¹H NMR spectrum of compound 1 (600 MHz, CDCl₃)

Figure S3 ¹³C NMR spectrum of compound 1 (150 MHz, CDCl₃)

Figure S10 ¹³C NMR spectrum of compound 2 (150 MHz, CDCl₃)

Figure S15 NOESY spectrum of compound 2

