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Supplementary Material  

1. Proof of Theorem 1:  

Our goal is to derive the formula for least square estimate of regression coefficient for W (i.e., 

ˆ id
W ) based on the ideal sample and the variance of ˆ id

W , for observational studies. First, one needs 

to define the following ordered data matrices for the ideal sample: 
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and the following ordered mean vectors:  
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The matrix TX X  for the ideal sample could then be modeled as the following block matrix:  
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The inverse of TX X  can be shown to have the following form:  
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It should be clear now that, to determine the definite form of T -1(X X)  I need to find out what 

id -1
VV(S )  is. As a variance-covariance matrix for the vector of predictors V, id

VVS can be expressed 

as the block matrix whose elements is formalized below:  
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where: 
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Furthermore, we define the following covariance vector: 
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All aforementioned sample covariances and variances are supposed to be computed according to 

the following formula:  
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for any variable x or y and any sample size n in this context.  

Consequently, the inverse of id
VVS can be formulated here:  
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Plugging the above matrix of id -1
VV(S )  into the block matrix of T -1(X X)  will give us the complete 

definite form of matrix T -1(X X) , whose elements are all ideal sample statistics such as ideal 

sample variances, ideal sample covariances and ideal sample means. To isolate the estimated 

regression coefficient for W, I only need to use the elements in the last row of T -1(X X) , which 

are provide next: 
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Because the estimated regression coefficient for W is the last element of T -1 T(X X) X Y which is 

the dot product between the last row of T -1(X X)  and TX Y , the expression of TX Y  is also 

needed here:  
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where:  
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Now one can calculate the estimated regression coefficient for W as the dot product between the 

last row of T -1(X X)  and the vector TX Y . The result is presented below:  
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The variance of ˆ id
W  should be straightforward: it is just the product of the known residual 

variance 2  and the element in the (p+2)th row and the (p+2)th column of T -1(X X) : 
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We note here that 𝑺𝑾𝒁
𝒊𝒅  appears in (A13) and (A14) should be equal to 0 as the correlation 

between the treatment indicator W and any single covariate in Z should be exactly 0, given that 

each subject in the ideal sample should be thought to participate in both the treatment and control 

group (which means the conditions 𝑊 1 and 𝑊 0 appear in every subject). As a result, the 

expressions of (A13) and (A14) can be greatly simplified for the ideal sample, given id
WZS = 0  

and un obn n :   

 𝛽 𝑟   (S15) 

 𝑉𝑎𝑟 𝛽   (S16) 

where 𝑟  denotes the correlation between the treatment status (W) and the outcome (Y) in the 

ideal sample. The expression of 𝛽  can be further derived based on Cohen et al. (2003):  

 𝛽 0.5  (S17) 

The expression for id
Y  is derived as:  
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Combining (A17) and (A18), 𝛽  is written as follows:  
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where:  
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Given the expression of 𝛽  in (A19) and the expression of 𝑉𝑎𝑟 𝛽  in (A16), the probit 

functions of the PIV can be easily derived based on the definitions (2) and (3) in the main text. 

This concludes the proof of theorem 1.    
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2. Supplementary Material Figure S1:  

 

Supplementary Material Figure S1: The relationship between the PIVR and retesting the null hypothesis based on 
the ideal sample for Hong and Raudenbush (2005), assuming 𝑌 45.2. The solid curve represents the null 
hypothesis: 𝛽 0 and the dashed curve represents the alternative hypothesis: 𝛽 𝛽  . The grey shaded area 
symbolizes the PIVR of Hong and Raudenbush (2005). 
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(f): The PIVR is 0.6 and Yt
un is 45.97
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(g): The PIVR is 0.7 and Yt
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(h): The PIVR is 0.8 and Yt
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(i): The PIVR is 0.9 and Yt
un is 45.8
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