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Aquila Optimizer: A novel meta-heuristic optimization Algorithm

Abstract

This paper proposes a novel population-based optimization method, called Aquila Optimizer (AO), which is

inspired by the Aquila’s behaviors in nature during the process of catching the prey. Hence, the optimization

procedures of the proposed AO algorithm are represented in four methods; selecting the search space by high

soar with the vertical stoop, exploring within a diverge search space by contour flight with short glide attack,

exploiting within a converge search space by low flight with slow descent attack, and swooping by walk and

grab prey. To validate the new optimizer’s ability to find the optimal solution for different optimization

problems, a set of experimental series is conducted. For example, during the first experiment, AO is applied

to find the solution of well-known 23 functions. The second and third experimental series aims to evaluate

the AO’s performance to find solutions for more complex problems such as thirty CEC2017 test functions

and ten CEC2019 test functions, respectively. Finally, a set of seven real-world engineering problems are

used. From the experimental results of AO that compared with well-known meta-heuristic methods, the

superiority of the developed AO algorithm is observed.

Keywords: Aquila Optimizer (AO); Optimization Algorithms; Meta-heuristics; Real-word Problems;

Optimization Problems.

1. Introduction

An optimization process refers to find the optimal values for specific parameters of a system to fulfill

the system design at the lowest cost [1]. Generally, real-world applications and problems in artificial intel-

ligence and machine learning have a discrete, unconstrained, or discrete nature [2]. Accordingly, employing

traditional mathematical based programming methods is hard to find the optimal solutions [3]. Therefore,5

in all science fields, we can find optimization problems. In recent decades we witnessed various optimization

algorithms have been proposed to improve different systems performance and reduce computation cost. The

traditional optimization methods suffer from certain shortcomings and limitations, for example, converging

to local optima and unknown search space. Besides, they have only a single-based solution [4]. To solve

these shortcomings, in recent years, many new optimization methods have been proposed. They have been10

applied to solve various problems.
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Meta-heuristic (MH) algorithms have received wide attention and have been employed to solve vari-

ous optimization problems. In general, we can categorize MH into four categories, swarm intelligence (SI)

algorithms, Evolutionary Algorithms (EA), and Physics-based algorithms (PhA), and Human-based algo-

rithms. SI algorithms include a group of algorithms inspired by swarms and animals’ social behaviors, such15

as [5, 6, 7]. The EA algorithms are proposed by simulating biological evolutionary behaviors, for example,

mutation, crossover, and selections, such as [8]. PhA algorithms are inspired by physical laws, such as [9, 10].

Human-based methods are inspired by some human behavior, such as [11].

Generally, all of these MH algorithms have standard features, such as the searching process, which

in general has two phases, the first one called diversification (exploration), and the second phase called20

intensification (exploitation) [12, 13]. In the first phase, the MH algorithm generates random operators

to explore different search space regions. In the second phase, the optimization method tries to find the

optimal solution from the search space. Therefore, an efficient MH optimization algorithm has to balance

the exploration and exploitation phase tendencies to avoid trapping at local optima.

We intend to introduce a more productive and effective algorithm; this paper introduces a novel natural-25

inspired based meta-heuristic optimization algorithm, called Aquila Optimizer (AO). The proposed AO

algorithm simulates the Aquila’s behavior during hunting in which showing the actions of each step of the

hunt. A set of twenty-three classical, thirty CEC2017, and ten CEC2019 test functions is used to verify the

robustness and effectiveness of the proposed AO rigorously. Moreover, seven engineering design problems

are used to investigate the proposed AO’s effectiveness further in solving real-world problems.30

The rest of this study is as follows: Section 2 describes the introduced meta-heuristic optimization

algorithms’ backgrounds. Section 3 illustrates the structure of the proposed AO. In Section 4, we evaluate

the proposed AO with different optimization problems. Also, the comparisons with state-of-art methods are

presented. Finally, Section 5 concludes the study.

2. Related Work35

This section presents a light review of some selected MH algorithms that belong to the four mentioned

types and highlight some of their applications in recent years.

2.1. Swarm Intelligence (SI) algorithms

Swarms inspire (SI) methods and animal behaviors in nature [14]. Scholars and researchers have proposed

different SI algorithms. Here we highlight some of these algorithms as follows. One of the most popular SI40
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algorithms is the Particle Swarm Optimization (PSO), which is inspired by swarm particles’ natural behav-

iors, in which each particle represents a candidate solution. Then each particle can be updated according

to the global best position and its local position[5]. In the previous decades, the PSO has been employed to

solve different problems, for example, to solve global optimization problems, document classification, image

segmentation, feature selection [15], data clustering, and also other industrial and engineering problems and45

applications [16]. Some ant species foraging behaviors inspire the Ant Colony Optimization (ACO) [6]. In

nature, ants deposit pheromone on the ground to mark the optimal path that needs to be followed by the

colony members [17]. It has received wide attention, and it has been applied in different optimization tasks.

For example, data mining, vehicle routing problems, classification, feature selection, time series prediction,

and others [18].50

Artificial Bee Colony (ABC) is inspired by the behaviors of the honey bee colony. It has three collections,

employed bees to search for food resources, onlooker bees to choose the food sources, and scout bees to

randomly search for food sources[7]. The ABC has been used in many optimization applications, such

as image segmentation, global optimization, wireless sensor network, job shop scheduling problems, and

others. Firefly Algorithm (FA) is inspired by flashing light of fireflies in oceans [19]. It also received wide55

attentions and has been adopted in different applications, such as image processing, feature selection, and

other optimization problems. In addition, there are many SI algorithms that proposed in literature, and

they showed good performances in various optimization tasks, such as Cuckoo Search (CS) Algorithm [20],

Whale Optimization Algorithm WOA [21], Salp Swarm Algorithm (SSA) [22], Moth Flame Optimization

(MFO) [23], Marine Predators Algorithm (MPA) [24], Lion Optimization Algorithm (LOA) [25], Grasshopper60

Optimization Algorithm [26], Emperor Penguin Optimizer [27], and Squirrel Search Algorithm [28].

2.2. Evolutionary Algorithms (EA)

Several EA algorithms have been proposed in the literature to solve optimization problems based on bi-

ological evolution’s natural behaviors. Here we present several examples of the EA algorithms. The Genetic

Algorithm (GA) is the most popular EA algorithm. It was developed by Holland [8], which inspired by65

the Darwinian theory of evolution. It has received wide attention and has been employed in many appli-

cations. For example, face recognition, feature selection, network anomaly detection, scheduling problems,

and many other engineering applications and problems [29]. Differential evolution (DE) is presented by

Storn and Price [30]. Also, it has been applied in various optimization tasks, such as, image classification,

global optimization, text classification, parallel machine scheduling, and others. Other popular EA-based70
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MH algorithms confirmed their performance in various optimization tasks, including Biogeography-Based

Optimizer (BBO) [31], and Invasive Tumor Growth [32].

2.3. Physics-based algorithms (PhA)

PhA algorithms depend on the physical law to propose solutions to optimization tasks. Among PhA

algorithms, we list some efficient PhA based optimization algorithms as follows. Big Bang–Big Crunch75

(BBBC) is one of the popular MH algorithms inspired by the evolution of the universe [33]. It has been

utilized by researchers in different fields, such as data clustering, global optimization, classification problems,

different engineering designs, and others. Gravitational Search Algorithm (GSA) is inspired by the law of

gravity and mass interactions [9]. Also, it received wide attention and has been used to improve and solve

various applications and problems. For example, image segmentation, feature selection, global optimization,80

engineering designs, and others. Multi-verse Optimizer (MVO) [10] is inspired by the multi-verses theory

in physics. In recent years, MVO has been employed to solve several problems, such as global optimiza-

tion problems, time series forecasting, image segmentation, feature selection, and others. Also, there are

other PhA based MH algorithms, such as Central Force Optimization (CFO) [34], and Henry gas solubility

optimization (HGSO) [4].85

2.4. Human-based Algorithms

By simulating some natural human behaviors, researchers proposed several MH algorithms for solving

optimization problems. Here, we highlight some of these methods as follows. Teaching based learning

algorithm (TBLA) [35] is inspired by the influence of a teacher on the output of learners in the class. It has

been applied to solve various problems such as constrained optimization problems [36] and various problems90

such as [37]. Socio Evolution Learning Optimization Algorithm (SELOA) [11] is proposed by simulating the

social learning behavior of humans organized as families in a societal setup. Furthermore, other popular

MH algorithms, such as sine cosine algorithm [38], and volleyball Premier League Algorithm [39]. Table 1

summarizes several popular MH algorithms.

Generally, population-based optimization algorithms start the optimization processes (improvement pro-95

cesses) by selecting candidate solutions randomly. These created solutions are evolutionary improved by the

optimization rules and evaluated by a specific objective function iteratively, the optimization techniques’

nature. Since optimization algorithms endeavor to find the optimal or near-optimal solution for the given

optimization problems stochastically, finding a solution in a single run is not guaranteed [46, 47]. However,
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Table 1: A summary of popular MH algorithms

Type Algorithm Ref. Inspired by
SI Particle Swarm Optimization (PSO) [5] The natural behaviors of swarm particles

Ant Colony Optimization (ACO) [6] Ants deposit pheromone on the ground
Artificial Bee Colony (ABC) [7] The behaviors of the honey bees colony
Firefly Algorithm (FA) [19] Flashing light of fireflies in oceans
Cuckoo Search (CS) [20] The behavior of cuckoo breeding parasitism
Whale Optimization Algorithm (WOA ) [21] The behavior of humpback whales
Salp Swarm Algorithm (SSA) [22] The behavior of salps navigating in oceans
Moth Flame Optimization (MFO) [23] The moths navigation method in nature
Lion Optimization Algorithm (LOA) [25] Lifestyle and cooperation of lions
Marine Predators Algorithm (MPA), [24] predators foraging strategy in oceans
Squirrel Search Algorithm (SSA) [28] The behavior of southern flying squirrels
Grasshopper Optimization Algorithm (GOA) [26] The behavior of grasshopper swarms
Golden Eagle Optimizer (GEO) [40] The behavior of golden eagles in tuning speed

EA Genetic Algorithm (GA) [8] Darwinian theory of evolution
Differential evolution (DE) [30] the natural phenomenon of evolution
Biogeography-Based Optimizer (BBO) [31] Biogeography related to species migration
Invasive Tumor Growth (ITG) [32] Kidney process.
Tree Growth Algorithm (TGA) [41] Competition of trees for acquiring foods and light
Arithmetic Optimization Algorithm (AOA) [42] The distribution behavior of the main arithmetic operators

PhA Big Bang–Big Crunch (BBBC) [33] The evolution of the universe
Gravitational Search Algorithm (GSA) [9] The law of gravity and mass interactions
Multi-verse Optimizer (MVO) [10] multi-verses theory
Central Force Optimization (CFO) [34] The metaphor of gravitational kinematics
Henry Gas Solubility Optimization (HGSO) [4] The behavior of Henry’s law
Thermal Exchange Optimization (TEO) [43] Newton’s law of cooling
Electromagnetic Field Optimization (EFO) [44] The behavior of electromagnets

Human based Teaching based learning algorithm (TBLA) [35] The influence of a teacher on the output of learners
Collective Decision Optimization (CSO) [45] Human decision-making characteristics
Socio Evolution & Learning Optimization Algorithm (SELOA) [11] Social learning behavior of humans

Others Volleyball Premier League Algorithm (VPLA) [39] Competitions of volleyball teams
Sine Cosine Algorithm (SCA) [38] Sine and cosine functions

the probability of obtaining the optimal global solution for the given problem is grown by a sufficient number100

of random solutions and evolutionary iterations.

Despite the variations between optimization algorithms in population-based meta-heuristic methods, the

optimization process is divided into two main phases: exploration/diversification versus exploitation/intensification

[48, 49]. This refers to the wide coverage of the search space by utilizing different search solutions of the

used algorithm to avoid the searching problems.105

3. Aquila Optimizer (AO)

In this section, the proposed nature-inspired algorithm, called Aquila Optimizer (AO), is presented as

follows.

3.1. Inspiration and behavior of Aquila during hunting

In the Northern Hemisphere, the Aquila is one of the most popular birds of prey. Aquila is the most110

common spread species of the Aquila. Similar to all birds, Aquila belongs to the group “Accipitridae”.

Typically, Aquila is dark brown, with lighter Golden-brown plumage on their back of a neck. Young Aquila
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of this group mainly has white color on the tail, and usually, their wings have minor white marks. Aquila uses

its speed and agility united with sturdy feet and large, sharpened talons to grab various prey, mainly rabbits,

hares, deeps, marmots, squirrels, and other ground animals [50]. Aquila and their distinctive behaviors can115

be observed in nature.

Aquila keeps territories that may be as high as 200 km2. They create large nests in mountains and other

high positions. The breeding actions occur in the spring; they are monogamous and may survive together

for many years or probably throughout life. Females produce up to 4 eggs and later incubate them for 6

weeks. Typically, one or two newborns live to fledge in about 12 weeks. These young Aquila usually achieve120

complete confidence in the fall, following which they move widely to building territory for themselves.

Due to its hunting bravery, Aquila is one of the most studied birds globally. Male Aquila got significantly

more prey when solo-hunting. Aquila utilizes their speed and sharp talons to hunt squirrels, rabbits, and

many other animals. They have even been recognized as an attacker for full-grown deer [51]. The next most

notable animal in the diet of Aquila is the ground squirrels.125

Mainly, four hunting methods are recognized to be used by the Aquila, with many distinct differences

and most Aquila’s ability to cleverly and quickly vary back and forth between hunting methods relying on

the situations. The following points express the hunting methods of Aquila.

• The first method, high soar with a vertical stoop, is utilized for hunting birds in flight, where the

Aquila rises at a high level over the ground. Once it explores prey, the Aquila enters a long, low-130

angled glide with speed rising as the wings close further. The Aquila needs a height feature over its

prey for the success of this method. Just before the engagement, the wings and tail are unfolded, and

feet are pushed ahead to grab the prey to look like a clap of thunder [52].

• The second method, contour flight with short glide attack, is recognized as the most usually used

method by Aquila, where the Aquila rises at a low level over the ground. The prey is then hounded135

closely, whether the prey is running or flying. This method is beneficial for hunting ground squirrels,

breeding grouse, or seabirds [53].

• The third method is a low flight with a slow descent attack. In this, the Aquila lows to the ground,

and next onslaught progressively on the prey. The Aquila selects its victim and lands on the prey’s

neck and back, trying to penetrate. This hunting method is utilized for slow prey, such as rattlesnakes,140

hedgehogs, foxes, and tortoises, or any prey with an absence of escape response [54].

• The fourth method is walking and grab prey, in which the Aquila walks on the land and tries to pull
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its prey. It is utilized for pulling the young of large prey (i.e., deer or sheep) out of the coverage area

[55].

In conclusion, Aquila is one of the most intelligent and skillful hunters and probably next after humans.145

The main inspiration for the proposed AO algorithm is derived from the methods mentioned above. The

following subsections describe how these processes are modeled in the AO.

3.2. Solutions initialization

In AO, it is a population-based method, the optimization rule begins with the population of candidate

solutions (X) as presented in Equation (1), which is generated stochastically between the upper bound150

(UB) and lower bound (LB) of the given problem. The best-obtained solution, so far, is determined as the

optimal solution approximately in each iteration.

X =



x1,1 · · · x1,j x1,Dim−1 x1,Dim

x2,1 · · · x2,j · · · x2,Dim

· · · · · · xi,j · · · · · ·
...

...
...

...
...

xN−1,1 · · · xN−1,j · · · xN−1,Dim

xN,1 · · · xN,j xN,Dim−1 xN,Dim


(1)

where X denotes a set of current candidate solutions, which are generated randomly by using Equation

(2), Xi denotes to the decision values (positions) of the ith solution, N is the total number of candidate

solutions (population), and Dim denotes to the dimension size of the problem.155

Xij = rand× (UBj − LBj) + LBj , i = 1, 2, ....., N j = 1, 2, ..., Dim (2)

where rand is a random number, LBj denotes to the jth lower bound, and UBj denotes to the jth upper

bound of the given problem.

3.3. Mathematical model of AO

The proposed AO algorithm simulates Aquila’s behavior during hunting in which showing the actions of

each step of the hunt. Hence, the optimization procedures of the proposed AO algorithm are represented160

in four methods; selecting the search space by high soar with the vertical stoop, exploring within a diverge

search space by contour flight with short glide attack, exploiting within a converge search space by low
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flight with slow descent attack, and swooping by walk and grab prey. The AO algorithm can transfer from

exploration steps to exploitation steps using different behaviors based on this condition if t≤ ( 2
3 )∗T the

exploration steps will be excited; otherwise, the exploitation steps well be executed.165

We modeled Aquila behaviors as a mathematical optimization paradigm, and it is determining the best

solution subjected to specific constraints. The mathematical model of the AO is proposed as follows.

3.3.1. Step 1: Expanded exploration (X1)

In the first method (X1), the Aquila recognizes the prey area and selects the best hunting area by high

soar with the vertical stoop. Here, the AO widely explorers from high soar to determine the area of the170

search space, where the prey is. Figure 1 shows the behavior of the Aquila high soar with the vertical stoop.

This behavior is mathematically presented as in Equation (3).

Figure 1: The behavior of the Aquila high soar with the vertical stoop.

X1(t+ 1) = Xbest(t)×
(

1− t

T

)
+ (XM (t)−Xbest(t) ∗ rand), (3)

where, X1(t+1) is the solution of the next iteration of t, which is generated by the first search method

(X1). Xbest(t) is the best-obtained solution until tth iteration, this reflects the approximate place of the

prey. This equation
(

1−t
T

)
is used to control the expanded search (exploration) through the number of175

iterations. XM (t) denotes to the locations mean value of the current solutions connected at tth iteration,
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which is calculated using Equation (4). rand is a random value between 0 and 1. t and T present the current

iteration and the maximum number of iteration, respectively.

XM (t) =
1

N

N∑
i=1

Xi(t), ∀j = 1, 2, ..., Dim (4)

where, Dim is the dimension size of the problem and N is the number of candidate solution (population

size).180

3.3.2. Step 2: Narrowed exploration (X2)

In the second method (X2), when the prey area is found from a high soar, the Aquila circles above the

target prey, prepares the land, and then attacks. This method called contour flight with short glide attack.

Here, AO narrowly explores the selected area of the target prey in preparation for the attack. Figure 2

shows the behavior of the Aquila contour flight with short glide attack. This behavior is mathematically185

presented as in Equation (5).

Figure 2: The behavior of the Aquila contour flight with short glide attack.

X2(t+ 1) = Xbest(t)× Levy(D) +XR(t) + (y − x) ∗ rand, (5)

9



where X2(t+1) is the solution of the next iteration of t, which is generated by the second search method

(X2). D is the dimension space, and Levy(D) is the levy flight distribution function, which is calculated

using Equation (6). XR(t) is a random solution taken in the range of [1 N ] at the ith iteration.

Levy(D) = s× u× σ
|υ|

1
β

(6)

where s is a constant values fixed to 0.01, u, and υ are random numbers between 0 and 1. σ is calculated190

using Equation (7).

σ =

(
Γ(1 + β)× sine(πβ2 )

Γ( 1+β
2 )× β × 2( β−1

2 )

)
(7)

where β is a constant value fixed to 1.5. In Equation (5), y and x are used to present the spiral shape

in the search, which are calculated as follows.

y = r × cos(θ) (8)

x = r × sin(θ) (9)

where,

r = r1 + U ×D1 (10)

θ = −ω ×D1 + θ1 (11)

θ1 =
3× π

2
(12)

r1 takes a value between 1 and 20 for fixed the number of search cycles, and U is a small value fixed to

0.00565. D1 is integer numbers from 1 to the length of the search space (Dim), and ω is a small value fixed

to 0.005. Figure 3 shows the behavior of the AO in a spiral shape.

3.3.3. Step 3: Expanded exploitation (X3)195

In the third method (X3), when the prey area is specified accurately, and the Aquila is ready for landing

and attack, the Aquila descends vertically with a preliminary attack to discover the prey reaction. This

10



Figure 3: The behavior of the AO in a spiral shape.

method called low flight with slow descent attack. Here, AO exploits the selected area of the target to get

close of prey and attack. Figure 4 shows the behavior of the Aquila low flight with a slow descent attack.

This behavior is mathematically presented as in Equation (13).

X3(t+ 1) = (Xbest(t)−XM (t))× α− rand+ ((UB − LB)× rand+ LB)× δ, (13)

where X3(t+1) is the solution of the next iteration of t, which is generated by the third search method (X3).

Xbest(t) refers to the approximate location of the prey until ith iteration (the best-obtained solution), and

XM (t) denotes to the mean value of the current solution at tth iteration, which is calculated using Equation

(4). rand is a random value between 0 and 1. α and δ are the exploitation adjustment parameters fixed in

this paper to a small value (0.1). LB denotes to the lower bound and UB denotes to the upper bound of200

the given problem.

3.3.4. Step 4: Narrowed exploitation (X4)

In the fourth method (X4), when the Aquila got close to the prey, the Aquila attacks the prey over the

land according to their stochastic movements. This method called walk and grab prey. Here, and finally,

AO attacks the prey in the last location. Figure 5 shows the behavior of the Aquila walk and grab prey.205

This behavior is mathematically presented as in Equation (14).

11



Figure 4: The behavior of the Aquila low flight with slow descent attack.

X4(t+ 1) = QF ×Xbest(t)− (G1 ×X(t)× rand)−G2 × Levy(D) + rand×G1, (14)

where X4(t+1) is the solution of the next iteration of t, which is generated by the fourth search method

(X3). QF denotes to a quality function used to equilibrium the search strategies, which is calculated using

Equation (15). G1 denotes various motions of the AO that are used to track the prey during the elope,

which is generated using Equation (16). G2 presents decreasing values from 2 to 0, which denote the flight210

slope of the AO that is used to follow the prey during the elope from the first location (1) to the last location

(t), which is generated using Equation (17). X(t) is the current solution at the t-th iteration.

QF (t) = t
2×rand()−1

(1−T )2 (15)

G1 = 2× rand()− 1 (16)

G2 = 2× (1− t

T
) (17)

QF (t) is the quality function value at the tth iteration, and rand is a random value between 0 and 1. t

and T present the current iteration and the maximum number of iteration, respectively. Levy(D) is the levy

flight distribution function calculated using Equation (6). Figure 6 shows the effects of the quality function215
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Figure 5: The behavior of the Aquila walk and grab prey.

(QF), G1, and G2 on the behavior of the AO.

Figure 6: The effects of the quality function (QF), G1, and G2 on the behavior of the AO.

3.4. Pseudo-code of the Aquila Optimizer (AO)

To recap, in AO, the optimization start the improvement procedures by generating a random predefined

set of candidate solutions, called population. Through the trajectory of repetition, the search strategies of the

AO explore the reasonable positions of the near-optimal solution or the best-obtained solution. Each solution220

updates its positions according to the best-obtained solution by the optimization processes of the AO. To

emphasize the equilibrium between the search strategies of the AO (i.e., exploration and exploitation), four
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different search strategies for the exploration and exploitation are provided (i.e., expanded exploration,

narrowed exploration, expanded exploitation, and narrowed exploitation). Finally, the search process of the

AO is terminated when the end criterion is met. The Pseudo-code of the AO is detailed in Algorithm 1.225

Algorithm 1 Aquila Optimizer

1: Initialization phase:
2: Initialize the population X of the GEO.
3: Initialize the parameters of the GEO (i.e., α, δ, etc).
4: while (The end condition is not met) do
5: Calculate the fitness function values.
6: Xbest(t)= Determine the best obtained solution according to the fitness values.
7: for (i=1,2...,N) do
8: Update the mean value of the current solution XM (t).
9: Update the x, y, G1, G2, Levy(D), etc.

10: if t≤ ( 2
3 )∗T then

11: if rand≤ 0.5 then
12: { . Step 1: Expanded exploration (X1)}
13: Update the current solution using Equation (3).
14: if Fitness(X1(t+1)) < Fitness(X(t)) then
15: X(t) =(X1(t+1))
16: if Fitness(X1(t+1)) < Fitness(Xbest(t)) then
17: Xbest(t) =X1(t+1)
18: end if
19: end if
20: else
21: { . Step 2: Narrowed exploration (X2)}
22: Update the current solution using Equation (5).
23: if Fitness(X2(t+1)) < Fitness(X(t)) then
24: X(t) =(X2(t+1))
25: if Fitness(X2(t+1)) < Fitness(Xbest(t)) then
26: Xbest(t) =X2(t+1)
27: end if
28: end if
29: end if
30: else
31: if rand≤ 0.5 then
32: { . Step 3: Expanded exploitation (X3)}
33: Update the current solution using Equation (13).
34: if Fitness(X3(t+1)) < Fitness(X(t)) then
35: X(t) =(X3(t+1))
36: if Fitness(X3(t+1)) < Fitness(Xbest(t)) then
37: Xbest(t) =X3(t+1)
38: end if
39: end if
40: else
41: { . Step 4: Narrowed exploitation (X4)}
42: Update the current solution using Equation (14).
43: if Fitness(X4(t+1)) < Fitness(X(t)) then
44: X(t) =(X4(t+1))
45: if Fitness(X4(t+1)) < Fitness(Xbest(t)) then
46: Xbest(t) =X4(t+1)
47: end if
48: end if
49: end if
50: end if
51: end for
52: end while
53: return The best solution (Xbest).

3.5. Computational complexity of the Aquila Optimizer (AO)

In this section, the general computational complexity of the AO is presented. The computational com-

plexity of the AO typically relies on three rules: solutions initialization, calculate the fitness functions, and

updating of solutions. Assume that, N is the number of solutions, O(N) is the computational complexity
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of the solutions’ initialization processes. The computational complexity of the solutions’ updating processes230

is O(T × N) + O(T × N × Dim), which consists of exploring for the best positions and updating the

solutions’ positions of all solutions, where the total number of iterations is called T and the dimension size

of the given problem is called Dim. Accordingly, the total computational complexity of the proposed AO is

O(N × (T × D + 1)).

4. Experimental results and discussions235

The current investigation appraises the performance of the AO using numerous test benchmark functions

and real-world optimization problems. Three series of well-regarded functions suit including twenty-three

classical functions, twenty-nine CEC2017 benchmarks, and ten CEC2019 benchmarks are utilized in the

numerical validation stage; moreover, seven engineering optimization problems are employed as examples

for the real-world applications. The AO has been implemented for 500 iterations with 30 search agents to240

solve the considered test benchmarks and engineering applications. In order to examine the consistency

and reliability of the AO, it has been executed for 30 independent times at this the average of the results

(Average), standard deviation (STD), worst-so-far solutions, and best-so-far ones have been reported. To

confirm the AO quality, it has been compared with a wide range of meta-heuristic optimization algorithms

by using Friedman’s mean rank test to demonstrate the AO superiority described in the following sections.245

To achieve a fair comparison, the considered algorithms have implemented the same number of iterations

and population size of AO 500, 30, respectively.

4.1. Definition of twenty-three classical test functions

To assess the AO’s in exploring the search space, exploiting the global solutions, and escaping from

the local minima, twenty-three benchmark functions include unimodal, multimodal, and fixed dimension250

multimodal functions. The Unimodal test benchmarks (F1-F7), in Table 2, are applied to examine the

AO’s exploitation ability. While, the set of multimodal benchmarks (F8-F13), in Table 3, are designed

to test the AO’s exploration tendency. These two sets of benchmarks are employed in 10, 50, 100, and

500 dimensions. The fixed dimension multimodal test benchmarks (F14-F23) of Table 4 show the ability

of AO in exploration the search space in the low dimensions. Numerous of well-established optimization255

algorithms including Grasshopper Optimization Algorithm (GOA) [56], Equilibrium Optimizer (EO) [57],

Particle Swarm Optimization (PSO) [58], Dragonfly Algorithm (DA) [59], Ant Lion Optimizer (ALO) [48],

Grey Wolf Optimizer (GWO) [60], Marine Predators Algorithm (MPA) [61], Salp Swarm Algorithm (SSA)
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[47], Sine Cosine Algorithm (SCA) [38], Whale Optimization Algorithm (WOA) [21], and Slime Mould

Algorithm (SMA) [62] have been tested with the same benchmarks set to show the superiority of the260

proposed AO. Table 5 summaries the parameter settings of the counterparts algorithms. The iterations

number and population size have been tuned as 500 and 50, respectively, for all the investigated methods

with 30 independent runs. The analysis has been performed on MATLAB 2018 platform using PC an Intel

Core i5, 2.2 GHz CPU and 16GB of RAM.

Table 2: Unimodal benchmark functions.

Function Description Dimensions Range fmin
F1 f(x) =

∑n
i=1 x

2
i 10, 50, 100, 500 [-100,100] 0

F2 f(x) =
∑n
i=0 |xi|+

∏n
i=0 |xi| 10, 50, 100, 500 [-10,10] 0

F3 f(x) =
∑d
i=1(

∑i
j=1 xj)

2 10, 50, 100, 500 [-100,100] 0

F4 f(x) = maxi{|xi|, 1 ≤ i ≤ n} 10, 50, 100, 500 [-100,100] 0

F5 f(x) =
∑n−1
i=1 [100(x2

i − xi+1)2 + (1− xi)2] 10, 50, 100, 500 [-30,30] 0
F6 f(x) =

∑n
i=1([xi + 0.5])2 10, 50, 100, 500 [-100,100] 0

F7 f(x) =
∑n
i=0 ix

4
i + random[0, 1) 10, 50, 100, 500 [-128,128] 0

Table 3: Multimodal benchmark functions.

Function Description Dimensions Range fmin
F8 f(x) =

∑n
i=1(−xisin(

√
|xi|)) 10, 50, 100, 500 [-500,500] -418.9829× n

F9 f(x) =
∑n
i=1[x2

i − 10cos(2πxi) + 10] 10, 50, 100, 500 [-5.12,5.12] 0

F10 f(x) = −20exp(−0.2
√

1
n

∑n
i=1 x

2
i ) −

exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e

10, 50, 100, 500 [-32,32] 0

F11 f(x) = 1 + 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) 10, 50, 100, 500 [-600,600] 0

F12 f(x) = π
n {10sin(πy1)} +∑n−1

i=1 (yi − 1)2[1 + 10sin2(πyi+1) +∑n
i=1 u(xi, 10, 100, 4)] , where yi = 1 +

xi + 1

4
, u(xi, a, k,m)


K(xi − a)m if xi > a

0 −a ≤ xi ≥ a
K(−xi − a)m −a ≤ xi

10, 50, 100, 500 [-50,50] 0

F13 f(x) = 0.1(sin2(3πx1) +
∑n
i=1(xi − 1)2[1 +

sin2(3πxi + 1)] + (xn − 1)21 + sin2(2πxn)) +∑n
i=1 u(xi, 5, 100, 4)

10, 50, 100, 500 [-50,50] 0

4.1.1. Qualitative analysis for the convergence of AO265

To validate the developed AO model’s performance, the convergence and the trajectory are used as in

Figure 7. This figure depicts the qualitative measures, such as the 2D shape of the function (as in the first

column), to discuss the search space’s topology—the search history of the solutions (second column). The

average fitness value, trajectory, and convergence curve in the third, fourth, and fifth columns.

In general, the search’s history discusses the interaction between the glad and prey. It improves the270

behavior of the AO to determine the modality of the collective search of glads. This modality represents

the movements of the glads around the optimal point in the case of unimodal functions. While in the case
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Table 4: Fixed-dimension multimodal benchmark functions.

Function Description Dimensions Range fmin

F14 f(x) =
(

1
500 +

∑25
j=1

1
j+

∑2
i=1

(xi − aij)
)−1

2 [-65,65] 1

F15 f(x) =
∑11
i=1

[
ai − x1(b2i+bix2)

b2i+bix3+x4

]2
4 [-5,5] 0.00030

F16 f(x) = 4x2
1 − 2.1x4

1 + 1
3x

6
1 + x1x2 − 4x2

2 + 4x4
2 2 [-5,5] -1.0316

F17 f(x)=
(
x2 − 5.1

4π2x
2
1 + 5

πx1 − 6
)2

+ 10(1− 1
8π )cos x1 + 10 2 [-5,5] 0.398

F18 f(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
]
×[

30 + (2x1 − 3x2)2 × (18− 32xi + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)
] 2 [-2,2] 3

F19 f(x) = −
∑4
i=1 ciexp

(
−
∑3
i=1 aij(xj − pij)2

)
3 [-1,2] -3.86

F20 f(x) = −
∑4
i=1 ciexp

(
−
∑6
i=1 aij(xj − pij)2

)
6 [0,1] -.32

F21 f(x) = −
∑5
i=1

[
(X − ai)(X − ai)T + ci

]−1
4 [0,1] -10.1532

F22 f(x) = −
∑7
i=1

[
(X − ai)(X − ai)T + ci

]−1
4 4 [0,1] -10.4028

F23 f(x) = −
∑10
i=1

[
(X − ai)(X − ai)T + ci

]−1
4 4 [0,1] -10.5363

Table 5: Parameter values for the comparative algorithms.

Algorithm Parameter Value
GOA l 1.5

f 0.5
EO r 0.5

a 4
GP 0.5

PSO Topology Fully connected
Cognitive and social constant (C1, C2) 2, 2
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range

DA w 0.2-0.9
s, a, and c 0.1
f and e 1

ALO I ratio 10w

w 2-6
GWO Convergence parameter (a) Linear reduction from 2 to 0
MPA γ γ¿1

P 0.0
SSA v0 0
SCA - -
WOA α Decreased from 2 to 0

b 2
SMA vb and vc Decreased from 2 to 0

of multimodal functions, the modality represents the scattering properties of glads. All of these modality

characteristics enhance the exploration and exploitation abilities when AO is used to solve multimodal and

unimodal functions, respectively.275

Moreover, from the third column that represents the average fitness value overall the solutions among

the number of iteration, it can be observed that the average fitness value at the beginning iterations is high.

However, before the number of iterations reached 50, the average becomes small, which indicates that the

AO requires a small number of iterations to convergence to the optimal solution. From the trajectory of the

solution (as in the fourth column), it can be seen that the solution has a high magnitude and frequency at280

the early iterations. At the last iterations, they have nearly vanished. This illustrates AO’s high exploration
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ability at the early iterations and good exploitation at the last iterations. Based on this behavior, AO has

a high chance of reaching the optimal solution.

It can be noticed from the convergence curve (last column in Figure 7) that there are variant types of

patterns based on the tested functions. For example, for the unimodal functions, their conference curves are285

smooth. It needs a small number of iterations to be enhanced. The convergence curve is similar to step-wise

for the multimodal functions because this type is more complex than unimodal functions.
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Figure 7: Qualitative results for the studied problems

4.1.2. Parameters analysis of the AO

In this section, we test the effect of changing the value of AO’s parameters on its performance. In

general, there are two main parameters in AO, so we put different scenarios according to the value of these290

parameters. These parameters are evaluated at one value from 0.1, 0.5, and 0.9; therefore, we have nine

scenarios (as in Table 6).

Table 7 depicts the statistical results obtained at each scenario among nine functions (i.e., F1, F3, F5,

F6, F7, F9, F11, F12, and F13). From these results, it can be noticed that the first scenario (i.e., α = 0.1

and δ = 0.1) among all the tested functions has better results overall in other scenarios. Followed by fourth295

and seventh scenarios that allocated the second and third rank, respectively. However, it can be observed

that AO’s performance at all of these scenarios is similar at F1, F3, F9, and F11. Also, by comparing the

first scenario (at low value) with scenario 9 (at high value), it can be noticed that the AO at the first scenario

wins two times while at another scenario not win. AO lost only three times in the first scenario, but AO

using the ninth scenario, lost five times. The seventh scenario has the same analysis as the first scenario.300

However, it allocates the third rank with a small difference from the first scenario.

The impact of the number of solutions (i.e., N) is examined on several benchmark functions. To ap-

propriately analyze the AO’s parameter sensitivity, we tested several numbers of solutions (i.e., 10, 20, 30,

40, and 50) by comparing the changes in the number of solution parameters throughout 100 iterations. It

can be seen from the obtained results in Figure 8 that when uses many population sizes, the proposed AO305

method keeps its advantages, which means that AO is more robust and less overwhelmed by the population

size. As shown in this figure, it is also clear that the change in the number of solutions in the first example

(F23) did not affect the algorithm’s ability to solve this problem. For F12 and F13, it was clear that the
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Table 6: Scenarios of the tuning parameters.

Scenario No. α value δ value
1 0.1 0.1
2 0.1 0.5
3 0.1 0.9
4 0.5 0.1
5 0.5 0.5
6 0.5 0.9
7 0.9 0.1
8 0.9 0.5
9 0.9 0.9

number of smaller solutions was less efficient than the rest at solving problems. Thus, we can say that the

best number of solutions is 30.310
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Table 7: The influence of the AO parameters (i.e., α and δ) tested on various classical test functions.

Fun No. Scenario No.

Measure Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 9
F1
Worst 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Average 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Best 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
STD 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F3
Worst 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Average 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Best 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
STD 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F5
Worst 3.5452E-03 1.2003E-02 1.0688E+00 2.4860E-03 7.7249E-02 1.5643E-01 9.2393E-03 8.7626E-02 1.9360E-01
Average 7.5563E-04 5.3272E-03 3.7669E-01 9.3808E-04 2.3046E-02 6.1452E-02 2.9616E-03 3.0283E-02 3.5318E-02
Best 3.0716E-05 4.9156E-05 2.5972E-03 2.1377E-05 2.6727E-04 3.3591E-03 4.8392E-05 2.5782E-04 2.3909E-04
STD 1.2825E-03 4.6059E-03 4.3612E-01 8.1676E-04 2.4598E-02 6.8500E-02 2.9794E-03 3.6559E-02 6.6042E-02
F6
Worst 9.3433E-04 1.4871E-03 1.6305E-03 4.5867E-04 1.6101E-03 1.8361E-03 2.5836E-04 5.0271E-04 1.2255E-02
Average 1.2866E-04 3.2509E-04 2.6693E-04 8.3540E-05 5.7930E-04 7.1889E-04 6.4938E-05 1.3677E-04 3.2565E-03
Best 8.9132E-08 1.2406E-05 1.8149E-07 4.0921E-09 9.8538E-07 2.0150E-05 9.8426E-08 2.4579E-06 1.9958E-05
STD 3.2581E-04 4.8124E-04 5.5469E-04 1.5817E-04 5.6937E-04 6.5062E-04 9.6101E-05 2.0381E-04 4.2484E-03
F7
Worst 2.4857E-03 6.0771E-04 9.8470E-04 1.8054E-03 7.5880E-04 1.5938E-03 2.5689E-03 2.2417E-03 1.5480E-03
Average 6.7149E-04 3.4123E-04 3.8074E-04 6.1805E-04 3.0839E-04 9.4638E-04 8.1345E-04 5.7466E-04 5.3287E-04
Best 7.4363E-05 9.3075E-05 7.2355E-05 1.6019E-05 2.6660E-06 3.0243E-04 5.4588E-05 7.3517E-05 2.0936E-05
STD 8.1515E-04 1.8032E-04 3.1235E-04 5.8056E-04 2.8467E-04 4.2589E-04 7.7100E-04 7.0843E-04 4.7333E-04
F9
Worst 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Average 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Best 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
STD 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F11
Worst 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Average 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Best 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
STD 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F12
Worst 2.5953E-06 2.4913E-04 6.0485E-04 1.4918E-05 6.8346E-03 3.9597E-04 8.0765E-05 2.5108E-04 1.8653E-03
Average 1.0423E-06 7.3327E-05 1.4308E-04 6.6588E-06 8.7494E-04 1.3414E-04 2.4816E-05 4.3581E-05 2.9459E-04
Best 2.2313E-08 7.3942E-07 6.3818E-07 3.1857E-07 4.2849E-08 6.2585E-06 2.2365E-07 3.7318E-08 3.2924E-07
STD 9.3764E-07 9.8852E-05 2.2879E-04 5.9844E-06 2.4083E-03 1.3325E-04 3.3871E-05 8.5033E-05 6.4205E-04
F13
Worst 4.4032E-04 2.1265E-03 4.8500E-03 2.0505E-04 5.4268E-04 1.9890E-03 3.1063E-04 9.6081E-04 2.4658E-03
Average 7.2669E-05 3.8436E-04 6.7492E-04 8.4223E-05 1.2665E-04 5.3678E-04 4.8247E-05 4.0248E-04 8.1892E-04
Best 9.3142E-08 5.7119E-06 7.0224E-06 7.4176E-07 2.6086E-06 2.8230E-06 2.9500E-07 1.8673E-05 4.4407E-05
STD 1.4966E-04 7.2191E-04 1.6890E-03 8.3966E-05 1.8606E-04 7.5516E-04 1.0756E-04 4.5882E-04 8.4563E-04
(W|L|T) (2|3|4) (0|5|4) (0|5|4) (0|5|4) (1|4|4) (0|5|4) (2|3|4) (0|5|4) (0|5|4)
Mean 2.0000E+00 2.8889E+00 4.0000E+00 2.1111E+00 3.3333E+00 4.6667E+00 2.2222E+00 3.2222E+00 4.5556E+00
Ranking 1 4 7 2 6 9 3 5 8
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Figure 8: The influence of the AO population size (i.e., number of solutions (N)) tested on various classical test functions.

4.1.3. Intensification capability of the AO

The set of unimodal functions of (F1-F7) have been employed to examine AO’s ability in exploiting the

global solutions as this suite of functions has only one global optimum. Table 8 displays AO and other

recent competitors’ results on the studied unimodal benchmarks (F1-F7). The results include the worst-

so-far solutions, the Average and STD values across the number of independent runs, and the best-so-far315

solutions that have been involved. The attained values confirm the superiority of the AO as it prevails over

23



the other peers in achieving the minimal values of the best-so-far solutions and the worst-so-far solutions and

the Average values with high reliability and consistency (minimum STD) for six functions of this set. The

SMA achieves the least mean value for F7 while the GWO and AO occupy the second and third positions

for this function’s mean value.320

Nonetheless, the AO offers the least best value for F7. Through this observation, one can see the AO’s

high ability in the intensification (exploitation) of the optimal solutions. This feature proceeds from its

main procedures; the proposed AO has two exploitation strategies to focus on the local search area mainly

(i.e., expanded exploitation and narrowed exploitation). This encourages the optimization process during

the search to focus on the local area widely and narrowly.325

4.1.4. Diversification capability of AO

The multiple local optima of the multimodal benchmarks are the recommended gate to examine the

MHs’ exploration (diversification) capacity. Two multimodal test functions are applied while testing the

AO, multidimensional (F8-F13) and fixed-dimensional test functions (F14-F23). The worst, average, best,

and STD values of the studied functions set are illustrated in Tables 8-9 for multidimensional (F8-F13), and330

fixed-dimensional (F14-F23) functions, respectively. The results of the tables reveal that the AO outperforms

the other peers in the majority of the high dimensional multimodal benchmarks (see Table 8) as it provides

the minimum statistical metrics values (worst, average, best, and STD) in five functions out of six from this

set. The SMA is the best competitor for F8, as shown in Table 8. For low (fixed) dimensional multimodal

benchmarks (F14-F23) (see Table 9), the AO attains the best performance for half of this set. In order to335

have meaningful statistical results, three lines of Tables 8 and 9 have been reported to display statistical

analysis for the implemented algorithms across the course of the studied functions to demonstrate the

superiority of AO. The first line shows three symbols (W|L|T) that denote the number of the functions in

which the performance of the algorithm is the best (win) | indistinguishable (tie) | inferior to the others

(loss). The second line refers to the Friedman mean rank. The third line illustrates the final rank values340

of the implemented algorithms. As per those lines, one can see that the AO exhibits the best performance

in the majority of the multimodal benchmarks; that is why it occupied the first position as a final rank in

comparison with the other peers. The reason behind this performance is that the proposed AO has two

exploration strategies to focus on the global search area mainly (i.e., expanded exploration and narrowed

exploitation). This helps the algorithm discover the search-land space efficiently and with high quality345

compared to the other recently proved algorithms. These strategies lead the optimization process in two

ways during the search on a wide search area (i.e., widely and narrowly).
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Table 8: Results of the comparative methods on classical test functions (F1-F13), the dimension is fixed to 10.

Fun No. Comparative methods

Measure AO GOA EO PSO DA ALO GWO MPA SSA SCA WOA SMA
F1
Worst 0.0000E+00 3.6969E-04 7.7535E-55 6.2268E-19 2.3600E+01 1.4323E-07 1.4594E-48 1.0861E-29 1.4896E-09 8.0970E-10 2.9973E-69 1.6487E-209
Average 0.0000E+00 9.2301E-05 1.9446E-55 1.6757E-19 1.3050E+01 4.3784E-08 7.0295E-49 5.1571E-30 8.8917E-10 2.0351E-10 1.0157E-69 2.3553E-210
Best 0.0000E+00 4.5311E-06 4.3340E-58 2.8877E-21 9.4062E-01 1.3931E-08 3.3951E-51 4.8287E-31 4.5257E-10 2.2968E-15 1.2964E-74 0.0000E+00
STD 0.0000E+00 1.5720E-04 3.3159E-55 2.5923E-19 8.5620E+00 5.6212E-08 5.5804E-49 3.9049E-30 4.0621E-10 3.4922E-10 1.4278E-69 0.0000E+00
F2
Worst 3.2140E-217 8.0714E+00 1.7385E-32 5.6805E-09 5.0004E+00 1.8234E+00 5.0478E-27 2.6606E-16 1.6008E-01 1.9284E-08 7.0476E-49 3.3909E-102
Average 9.4973E-218 1.9913E+00 4.7530E-33 1.8197E-09 2.6815E+00 6.5730E-01 1.8314E-27 1.1119E-16 3.2973E-02 7.1625E-09 1.4120E-49 4.8441E-103
Best 6.5477E-225 4.2831E-02 4.4565E-34 1.8509E-10 1.1170E+00 2.0566E-05 5.2330E-29 1.5592E-17 7.8584E-06 2.2667E-11 2.3267E-54 4.0840E-185
STD 0.0000E+00 3.4564E+00 7.1132E-33 2.3197E-09 1.4933E+00 9.0885E-01 2.2740E-27 1.2968E-16 7.1078E-02 9.7874E-09 3.1504E-49 1.2816E-102
F3
Worst 0.0000E+00 7.9216E+00 1.3672E-26 8.9441E-05 2.2990E+02 3.5658E+01 5.9319E-19 8.8997E-13 1.6144E-02 1.5833E+00 9.1052E+02 5.9474E-170
Average 0.0000E+00 2.3721E+00 2.7965E-27 2.4370E-05 1.5135E+02 9.7732E+00 1.4430E-19 2.9489E-13 3.2460E-03 3.1907E-01 4.1977E+02 8.4963E-171
Best 0.0000E+00 7.6675E-01 3.2828E-30 3.0206E-07 4.9375E+01 7.7055E-01 5.8410E-22 4.3286E-15 5.5017E-06 8.7897E-06 1.8044E+01 0.0000E+00
STD 0.0000E+00 3.1152E+00 6.0803E-27 3.7242E-05 6.6986E+01 1.4868E+01 2.5214E-19 4.1003E-13 7.2100E-03 7.0675E-01 3.7377E+02 0.0000E+00
F4
Worst 3.4546E-217 3.6825E-01 4.5050E-18 9.0690E-04 5.4895E+00 1.4412E-01 5.9612E-15 8.9567E-13 6.6264E-04 4.2456E-03 1.0180E+01 4.1196E-106
Average 9.9112E-218 1.6042E-01 9.0972E-19 2.4924E-04 3.1205E+00 3.4159E-02 2.1428E-15 4.8253E-13 1.7262E-04 1.3333E-03 3.1560E+00 6.2423E-107
Best 2.3220E-221 8.7472E-02 7.2504E-22 2.0935E-05 1.5899E+00 1.0461E-03 2.3617E-16 2.3066E-13 1.6171E-05 4.3787E-06 2.1035E-03 4.1535E-184
STD 0.0000E+00 1.1778E-01 2.0099E-18 3.7336E-04 1.6164E+00 6.1690E-02 2.5515E-15 2.7060E-13 2.7860E-04 1.8792E-03 4.0482E+00 1.5441E-106
F5
Worst 7.2509E-03 4.7288E+02 5.8178E+00 7.6530E+00 1.2150E+04 2.1338E+02 8.0599E+00 8.8155E+00 6.4316E+02 8.2314E+00 8.9311E+00 8.2833E+00
Average 1.8851E-03 1.3186E+02 5.5290E+00 4.9164E+00 2.7086E+03 1.1610E+02 6.9905E+00 8.7760E+00 1.8700E+02 7.6830E+00 7.6503E+00 6.6668E+00
Best 5.8588E-05 3.5924E+00 5.3001E+00 1.0189E-01 1.3482E+02 5.9959E+00 6.2379E+00 8.7560E+00 7.8930E+00 7.2782E+00 6.8245E+00 1.3987E-01
STD 2.5151E-03 1.9815E+02 2.4395E-01 2.8429E+00 5.2795E+03 1.0054E+02 7.6379E-01 2.3773E-02 2.5958E+02 4.4474E-01 8.2650E-01 2.9165E+00
F6
Worst 1.9689E-04 7.2259E-04 8.5541E-14 2.0342E-16 4.5832E+01 1.1796E-07 5.3267E-06 8.6068E-11 9.3625E-01 5.1611E-01 2.3389E-01 1.1110E-03
Average 6.3114E-05 2.2305E-04 4.1139E-14 4.3574E-17 1.6905E+01 3.2933E-08 3.5900E-06 2.8785E-11 6.1533E-01 4.1137E-01 5.0174E-02 4.7827E-04
Best 7.2800E-08 3.7020E-07 4.8416E-16 2.8863E-21 1.0348E+00 7.9036E-09 2.5332E-06 3.7619E-12 3.1269E-01 2.9111E-01 1.1980E-03 2.0744E-04
STD 8.9617E-05 2.9549E-04 3.2871E-14 8.9572E-17 1.8622E+01 4.7742E-08 1.1089E-06 3.2764E-11 2.3594E-01 9.6704E-02 1.0272E-01 3.0449E-04
F7
Worst 1.5929E-03 1.5150E-01 1.8674E-03 1.6135E-02 4.2162E-02 6.1820E-02 1.3368E-03 2.1653E-03 3.6384E-02 3.8409E-03 8.9085E-03 9.9489E-04
Average 8.2851E-04 1.0781E-01 1.3129E-03 9.4087E-03 2.4046E-02 3.4906E-02 6.4406E-04 1.0836E-03 2.1775E-02 2.4214E-03 5.2117E-03 4.9240E-04
Best 3.6048E-05 5.4523E-02 7.1835E-04 3.9634E-03 7.3884E-03 1.6443E-02 3.9526E-04 3.9490E-04 1.3986E-02 1.4779E-03 1.9935E-03 6.3985E-05
STD 4.8479E-04 4.3620E-02 4.8920E-04 4.3669E-03 1.6416E-02 1.9059E-02 3.8983E-04 7.1962E-04 8.7354E-03 9.6575E-04 3.3316E-03 3.9987E-04
F8
Worst -1.4073E+03 -2.4131E+03 -2.6410E+03 -1.5161E+03 -2.5770E+03 -2.0333E+03 -2.2885E+03 -3.2378E+03 -2.4891E+03 -1.9022E+03 -2.5990E+03 -4.1892E+03
Average -2.2694E+03 -2.7474E+03 -3.1952E+03 -2.1103E+03 -2.7496E+03 -2.4552E+03 -2.7077E+03 -3.5326E+03 -2.9844E+03 -2.0030E+03 -3.0851E+03 -4.1895E+03
Best -2.6958E+03 -3.3212E+03 -3.5946E+03 -2.5933E+03 -2.9985E+03 -3.2226E+03 -3.1415E+03 -3.9514E+03 -3.2590E+03 -2.1001E+03 -3.8213E+03 -4.1898E+03
STD 4.6187E+02 3.4712E+02 3.9090E+02 4.4304E+02 1.6458E+02 4.9743E+02 3.4845E+02 2.7177E+02 3.0091E+02 7.7952E+01 4.4698E+02 1.8346E-01
F9
Worst 0.0000E+00 6.2682E+01 0.0000E+00 1.2934E+01 4.7290E+01 4.2783E+01 1.5144E+01 5.0275E-07 2.5869E+01 6.3709E+00 1.4211E-14 0.0000E+00
Average 0.0000E+00 4.3380E+01 0.0000E+00 5.6148E+00 3.1340E+01 3.1441E+01 4.3101E+00 1.0055E-07 1.4327E+01 1.2742E+00 2.8422E-15 0.0000E+00
Best 0.0000E+00 2.8854E+01 0.0000E+00 1.9899E+00 1.0558E+01 1.5919E+01 0.0000E+00 0.0000E+00 5.9697E+00 2.7143E-12 0.0000E+00 0.0000E+00
STD 0.0000E+00 1.4099E+01 0.0000E+00 4.3077E+00 1.5146E+01 1.1401E+01 6.6614E+00 2.2484E-07 8.7477E+00 2.8492E+00 6.3553E-15 0.0000E+00
F10
Worst 8.8818E-16 3.5742E+00 4.4409E-15 1.1957E-09 1.2660E+01 2.0133E+00 1.5099E-14 7.9936E-15 2.8136E+00 6.9120E-06 7.9936E-15 8.8818E-16
Average 8.8818E-16 1.6781E+00 4.4409E-15 7.0605E-10 4.9842E+00 4.0282E-01 1.1546E-14 5.1514E-15 1.4882E+00 1.7246E-06 4.4409E-15 8.8818E-16
Best 8.8818E-16 1.0370E-03 4.4409E-15 3.2066E-10 1.4270E+00 8.1753E-05 7.9936E-15 4.4409E-15 9.2279E-06 5.6642E-08 8.8818E-16 8.8818E-16
STD 0.0000E+00 1.3033E+00 0.0000E+00 3.7348E-10 4.4356E+00 9.0030E-01 3.5527E-15 1.5888E-15 1.1045E+00 2.9457E-06 3.5527E-15 0.0000E+00
F11
Worst 0.0000E+00 2.9456E-01 2.9518E-02 5.3434E-01 1.0454E+00 3.7635E-01 5.9217E-02 0.0000E+00 2.6543E-01 4.7349E-02 2.4588E-01 0.0000E+00
Average 0.0000E+00 2.5765E-01 5.9036E-03 2.4519E-01 5.8851E-01 2.3516E-01 1.3919E-02 0.0000E+00 1.9428E-01 1.2173E-02 9.7462E-02 0.0000E+00
Best 0.0000E+00 1.9581E-01 0.0000E+00 1.0083E-01 6.5156E-02 1.2060E-01 0.0000E+00 0.0000E+00 1.3262E-01 6.6321E-12 0.0000E+00 0.0000E+00
STD 0.0000E+00 4.1907E-02 1.3201E-02 1.7935E-01 3.7515E-01 1.1319E-01 2.5718E-02 0.0000E+00 5.8327E-02 2.0376E-02 1.3346E-01 0.0000E+00
F12
Worst 1.0421E-04 3.5311E+00 6.8465E-14 2.8069E-19 4.6366E+00 5.6267E+00 2.0267E-02 4.3457E-11 5.1834E-01 2.1882E-01 2.3163E-02 2.9263E-02
Average 2.9262E-05 1.2733E+00 1.7762E-14 5.8169E-20 1.6329E+00 2.9035E+00 1.0206E-02 2.5447E-11 1.9305E-01 1.3370E-01 1.1534E-02 1.1291E-02
Best 1.1309E-07 8.3499E-04 5.9790E-17 2.0418E-21 7.5827E-02 2.6276E-01 2.7411E-06 1.1688E-11 5.1467E-11 6.6012E-02 1.4821E-03 8.9676E-05
STD 3.5700E-05 1.4307E+00 2.8777E-14 1.2439E-19 1.7959E+00 1.9525E+00 9.9777E-03 1.3247E-11 2.1431E-01 6.0210E-02 9.0233E-03 1.2002E-02
F13
Worst 2.7104E-04 5.5560E-02 4.3949E-02 1.0987E-02 1.5863E+00 1.0991E-02 1.9995E-01 9.4975E-11 1.0987E-02 4.7545E-01 1.5739E-01 5.1401E-01
Average 9.5026E-05 2.2263E-02 8.7898E-03 2.1975E-03 9.3911E-01 4.3965E-03 4.0000E-02 5.6741E-11 2.1975E-03 3.9263E-01 7.2692E-02 1.1294E-01
Best 2.7176E-06 8.2498E-04 4.0278E-16 8.6127E-22 2.8877E-01 2.2534E-07 6.5501E-06 3.5877E-11 5.7806E-10 3.3532E-01 2.4993E-03 6.6998E-03
STD 1.0312E-04 2.2905E-02 1.9655E-02 4.9137E-03 4.6888E-01 6.0192E-03 8.9412E-02 2.3790E-11 4.9137E-03 5.0910E-02 6.4705E-02 1.8368E-01
(W|L|T) (6|5|2) (0|13|0) (0|12|1) (2|10|0) (0|13|0) (0|13|0) (0|13|0) (1|12|0) (0|13|0) (1|12|0) (0|13|0) (1|10|2)
Mean 2.0000E+00 8.8667E+00 4.1333E+00 5.9333E+00 9.8667E+00 8.4667E+00 5.0000E+00 4.8667E+00 8.8000E+00 7.3333E+00 6.2000E+00 4.7333E+00
Ranking 1 11 2 6 12 9 5 4 10 8 7 3

25



Table 9: Results of the comparative methods on classical test functions (F14-F23)

Fun No. Comparative methods

Measure AO GOA EO PSO DA ALO GWO MPA SSA SCA WOA SMA
F14
Worst 2.9821E+00 1.4600E+01 9.9800E-01 3.9700E+00 1.9900E+00 5.9300E+00 1.0800E+01 9.9800E-01 2.9800E+00 2.9800E+00 1.0800E+01 4.6705E+00
Average 2.3207E+00 1.2300E+01 9.9800E-01 2.7800E+00 1.4000E+00 3.5700E+00 6.2900E+00 9.9800E-01 1.5900E+00 1.4900E+00 4.1400E+00 2.4741E+00
Best 9.9800E-01 9.8000E+00 9.9800E-01 1.9900E+00 9.9800E-01 9.9800E-01 2.9800E+00 9.9800E-01 9.9800E-01 9.9800E-01 9.9800E-01 9.9800E-01
STD 1.0246E+00 1.8600E+00 1.5700E-16 1.0800E+00 5.4400E-01 2.2700E+00 4.1000E+00 0.0000E+00 8.8800E-01 8.5900E-01 4.2300E+00 4.6712E+00
F15
Worst 8.4575E-04 2.1800E-02 3.5300E-04 9.9300E-04 2.0400E-02 2.0400E-02 2.0400E-02 3.0700E-04 2.0800E-02 1.9100E-03 1.5200E-03 1.4362E-03
Average 5.5089E-04 9.7900E-03 3.2100E-04 9.2000E-04 5.7200E-03 4.9500E-03 8.4500E-03 3.0700E-04 4.8000E-03 1.2800E-03 7.7400E-04 8.3936E-04
Best 4.0581E-04 7.8500E-04 3.0800E-04 8.6600E-04 1.5000E-03 7.7800E-04 3.0800E-04 3.0700E-04 7.4300E-04 6.9200E-04 3.1300E-04 5.1901E-04
STD 1.9027E-04 1.0500E-02 1.9800E-05 6.6400E-05 8.1900E-03 8.6500E-03 1.0900E-02 2.9000E-15 8.9500E-03 4.9000E-04 4.5600E-04 3.6588E-04
F16
Worst -1.0316E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0290E+00
Average -1.0316E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0306E+00
Best -1.0316E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0300E+00 -1.0313E+00
STD 6.5206E-08 2.1400E-13 1.9200E-16 1.9200E-16 4.2300E-07 2.9300E-13 2.8000E-08 0.0000E+00 1.5200E-14 2.1700E-05 1.1800E-09 8.5115E-04
F17
Worst 3.9789E-01 0.0000E+00 3.9800E-01 3.9800E-01 3.9800E-01 3.9800E-01 3.9800E-01 3.9800E-01 0.0000E+00 4.0200E-01 3.9800E-01 3.9933E-01
Average 3.9789E-01 0.0000E+00 3.9800E-01 3.9800E-01 3.9800E-01 3.9800E-01 3.9800E-01 3.9800E-01 0.0000E+00 4.0000E-01 3.9800E-01 3.9829E-01
Best 3.9789E-01 0.0000E+00 3.9800E-01 3.9800E-01 3.9800E-01 3.9800E-01 3.9800E-01 3.9800E-01 0.0000E+00 3.9900E-01 3.9800E-01 3.9798E-01
STD 4.7081E-07 0.0000E+00 0.0000E+00 0.0000E+00 1.1900E-06 1.8000E-13 1.0500E-05 4.3700E-14 0.0000E+00 1.3700E-03 1.9800E-04 5.2390E-04
F18
Worst 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 8.4000E+01 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00
Average 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 1.9200E+01 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00
Best 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00
STD 3.0000E+00 1.7500E-12 1.1300E-15 1.2600E-15 4.6300E-13 1.5400E-12 3.6200E+01 1.1300E-15 5.9500E-13 1.1300E-03 1.5500E-04 4.6300E-13
F19
Worst -3.8607E+00 -3.0800E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8500E+00 -3.8500E+00 -3.8336E+00
Average -3.8624E+00 -3.5400E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8500E+00 -3.8500E+00 -3.8499E+00
Best -3.8628E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8600E+00 -3.8500E+00 -3.8600E+00 -3.8601E+00
STD 8.4657E-04 3.2900E-01 6.2800E-16 3.1400E-16 1.4800E-03 4.6500E-11 1.8200E-03 3.1400E-16 2.8100E-10 1.3200E-03 4.4600E-03 1.0229E-02
F20
Worst -3.1994E+00 -3.2000E+00 -3.2000E+00 -3.2000E+00 -3.1800E+00 -3.1900E+00 -3.0800E+00 -3.2000E+00 -3.1600E+00 -2.6000E+00 -3.0900E+00 -2.8432E+00
Average -3.3014E+00 -3.3000E+00 -3.3000E+00 -3.2500E+00 -3.2100E+00 -3.2700E+00 -3.2000E+00 -3.3000E+00 -3.2400E+00 -2.9300E+00 -3.2600E+00 -3.3011E+00
Best -3.3220E+00 -3.3200E+00 -3.3200E+00 -3.3200E+00 -3.3200E+00 -3.3200E+00 -3.3200E+00 -3.3200E+00 -3.3200E+00 -3.0700E+00 -3.3200E+00 -3.2223E+00
STD 4.9969E-02 5.5600E-02 5.3200E-02 6.5100E-02 6.0500E-02 6.9000E-02 8.5900E-02 5.3200E-02 7.7000E-02 1.8900E-01 9.9200E-02 1.3453E-01
F21
Worst -1.0140E+01 -2.6800E+00 -2.9400E-01 -2.6300E+00 -2.6300E+00 -2.6800E+00 -1.0100E+01 -1.0002E+01 -5.0600E+00 -4.9600E-01 -5.0500E+00 -5.0240E+00
Average -1.0149E+01 -6.1500E+00 -4.6600E-01 -7.1500E+00 -6.6300E+00 -4.6100E+00 -1.0100E+01 -1.0013E+01 -6.0800E+00 -8.9400E-01 -8.0700E+00 -7.5258E+00
Best -1.0153E+01 -1.0200E+01 -7.1100E-01 -1.0200E+01 -1.0200E+01 -5.1000E+00 -1.0200E+01 -1.0200E+01 -1.0200E+01 -2.1000E+00 -1.0100E+01 -1.0152E+01
STD 4.9281E-03 3.7800E+00 1.5900E-01 4.1100E+00 3.3700E+00 1.0800E+00 2.9900E-03 1.7800E-11 2.2700E+00 6.9300E-01 2.7500E+00 2.7307E+00
F22
Worst -1.0395E+01 -2.7500E+00 -5.0900E+00 -2.7500E+00 -2.7500E+00 -3.7200E+00 -1.0400E+01 -1.0400E+01 -3.7200E+00 -9.0600E-01 -2.9400E-01 -5.0840E+00
Average -1.0401E+01 -7.3400E+00 -9.3400E+00 -6.4700E+00 -6.3800E+00 -7.7300E+00 -1.0400E+01 -1.0400E+01 -8.0100E+00 -1.9000E+00 -5.5600E-01 -1.0304E+01
Best -1.0403E+01 -1.0400E+01 -1.0400E+01 -1.0400E+01 -1.0300E+01 -1.0400E+01 -1.0400E+01 -1.0400E+01 -1.0400E+01 -4.0200E+00 -8.5800E-01 -1.0401E+01
STD 2.9768E-03 4.1900E+00 2.3800E+00 3.6800E+00 3.5400E+00 3.6600E+00 1.3400E-03 1.0400E-11 3.3100E+00 1.4300E+00 2.7200E-01 2.7263E+00
F23
Worst -1.0535E+01 -1.6800E+00 -3.8400E+00 -1.0500E+01 -1.6800E+00 -3.8400E+00 -1.0500E+01 -7.8900E-01 -1.0500E+01 -2.4600E+00 -5.1000E+00 -5.1209E+00
Average -1.0536E+01 -4.2600E+00 -9.2000E+00 -1.0500E+01 -6.5200E+00 -9.2000E+00 -1.0500E+01 -2.0900E+00 -1.0500E+01 -4.1400E+00 -9.4200E+00 -7.6143E+00
Best -1.0536E+01 -1.0500E+01 -1.0500E+01 -1.0500E+01 -1.0500E+01 -1.0500E+01 -1.0500E+01 -5.1300E+00 -1.0500E+01 -7.2700E+00 -1.0500E+01 -1.0485E+01
STD 2.7562E-04 3.6000E+00 3.0000E+00 1.5400E-15 3.7400E+00 3.0000E+00 1.9800E-03 1.9000E+00 2.1000E-11 1.9000E+00 2.4200E+00 2.7558E+00
(W|L|T) (6|6|1) (1|11|1) (0|11|2) (0|12|1) (0|12|1) (0|12|1) (0|13|0) (2|9|2) (1|11|1) (0|12|1) (0|12|1) (0|12|1)
Mean 2.0000E+00 7.0000E+00 3.9000E+00 4.9000E+00 5.9000E+00 5.7000E+00 6.1000E+00 3.0000E+00 4.6000E+00 8.1000E+00 5.9000E+00 5.6000E+00
Ranking 1 11 3 5 8 7 10 2 4 12 8 6
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4.1.5. Acceleration convergence analysis of AO

The convergence of the AO for the optimal solutions across the iteration numbers is an essential factor

that should be investigated, therefore Figure 9 depicts the best solutions attained so far across the iterations350

number. The acceleration convergence curves of the proposed AO show a detectable decaying rate in the

cases of the unimodal functions (F1-F7). Meanwhile, other algorithms suffer from an intense stagnation to

the local solutions that confirm the AO’s exploitation stage is high capacity with a reliable exploration. The

AO’s convergence curves of the multimodal functions show the smooth transition between its exploration

and exploitation phases. It convergences for optimal solutions with an observable speed compared with355

the other peers in F10, F11, F12, F13, F14, F16, F17. F21, F22, and F23. For these functions, it can be

seen that the AO has a high balance between exploration and exploitation stages as it catches the nearest

values for the optimal solutions with the fastest response in comparison with the other peers then these

solutions have been exploited efficiently across the number of iterations to provide the optimal solutions.

For F18, F19, and F20, the AO gradually recognizes the optimal solutions and updates the solutions across360

the iteration numbers that confirm the preceding observation.

27



28



Figure 9: Convergence behavior of the comparative algorithms on classical test functions (F1-F23).

4.1.6. Stability analysis of AO

To evaluate the stability and quality of the proposed AO’s performance while dealing with high dimen-

sional optimization problems, thirteen functions of Tables 2-3 have been employed with three dimensions

levels of 50, 100, and 500. The AO and the other counterparts (GOA, EO, PSO, DA, ALO, GWO, MPA,365

SSA, SCA, WOA, and SMA) have been implemented for 30 independent runs with 500 iteration and 50

search agents. The worst, average, best, and STD values of the considered benchmarks’ test-bed by the

executed algorithms have been computed as in Tables 10-11 and 12 for the three studied dimensions of 50,

100, and 500, respectively. Furthermore, the number of the functions in which the algorithm can be classified

as winning | tie | loss (W | L | T), as well as the total rank values of the algorithms, have been reported in370

the last lines of the Tables 10-11 and 12 to have a detailed statistical analysis. The obtained results confirm

that the AO shows its reliability, stability, and robustness by increasing the optimized functions’ dimension

where it has the best performance for seven 50 dimensional functions.
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Moreover, it is the best for nine functions for the cases of 100 and 500-dimensional test functions. This

observation approves the AO’s efficient exploration and exploitation capabilities in discovering the search375

domain while dealing with the many local optima of high dimensional multimodal functions and exploit

the optimal solutions accurately. For the other counterparts, the SMA occupied the second rank after AO

with success performance for only one function in 100 and 500-dimensional benchmarks. In contrast, the

GOA, EO, PSO, DA, ALO, GWO, MPA, SSA, and SCA failed to show the best performance for these high

dimensional functions. Sequentially, the AO outperforms the other counterparts and occupies the first rank380

for the three cases of high dimensional functions.

4.2. Results comparisons using CEC2017 test functions

To further investigate the quality of the proposed AO and examine its capabilities of the exploration,

exploitation, and local optimum avoidance, one of the most challenging benchmarks has been employed

is the CEC2017 suite. Four classes have been covered in the twenty-nigh CEC2017 functions that are385

unimodal(F1-F3), multimodal (F4-F11), hybrid (F12-F20), and finally, composition functions (F21-F30).

The specifications of the CEC2017 has been reported in Table 13. We examined the AO with these bench-

marks and compared it with well-regarded algorithms such as GA, PSO, CS, GWO, SSA, EO, GSA, and

Covariance Matrix Adaptation Evolution Strategy (CMA-ES). All the algorithms have been executed for

30 independent runs with 500 iterations and 50 search agents. The average and STD values of the studied390

benchmarks set, moreover, the number of functions in which the algorithms can be accounted as the best

| indistinguishable | inferior to the others, and the Friedman mean rank value, as well as the final ranks of

the algorithms, are listed in Table 14.

The results divulge that the AO has a comparable performance concerning the SI techniques (PSO, CS,

GWO, SSA, and EO), the EA algorithms (GA, CMA-ES), as well as the PhA one (GSA). The AO reaches395

for the optimal solutions of F9. It shows the nearest average values for the optimal solutions for other eight

functions ( F5, F14, F16, F20, F21, F24, F25, F30) meanwhile the GA, PSO, CS, GWO, EO, and GSA failed

to classified as the best algorithms for any function. The CMA-ES is considered the stronger competitor

for AO with achieving the best response for eight functions. Most of the functions in which the AO has

the best response from the hybrid and composition functions affirm the high quality of the exploration and400

exploitation phases of the AO and its ability to deal with the high local optimal of the composition functions.

The AO has no significant difference from the other algorithms in 13 functions and has a minimum Friedman

mean rank across the studied test-bed suit course. Therefore it has the first rank as a final score over these

studied functions. The best convergence curves of the implemented algorithms have been depicted in Figure
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Table 10: Results of the comparative methods on classical test functions (F1-F13), the dimension is fixed to 50.

Fun No. Comparative methods

Measure AO GOA EO PSO DA ALO GWO MPA SSA SCA WOA SMA
F1
Worst 0.0000E+00 7.8000E+03 4.0700E-21 6.9700E+00 3.6400E+03 1.1100E+04 3.7000E-11 1.5500E-21 1.0200E+03 7.0200E+03 5.5800E-42 1.9744E-220
Average 0.0000E+00 6.7200E+03 1.0800E-21 3.9900E+00 3.0200E+03 6.7300E+03 1.2100E-11 4.2500E-22 6.1400E+02 3.2800E+03 1.4000E-42 2.8206E-221
Best 0.0000E+00 4.7800E+03 3.2000E-23 2.3600E+00 2.4800E+03 3.7400E+03 3.0100E-12 3.6600E-24 2.8000E+02 5.7400E+02 4.5600E-58 0.0000E+00
STD 0.0000E+00 1.3600E+03 1.9900E-21 2.0300E+00 5.5200E+02 3.1100E+03 1.6600E-11 7.4800E-22 3.0500E+02 2.7000E+03 2.7900E-42 0.0000E+00
F2
Worst 3.3730E-216 4.1325E+24 1.2911E-11 1.0885E+02 1.2331E+02 3.8276E+02 7.1711E-05 7.9169E-12 1.7569E+06 1.5811E+01 9.3673E-36 3.4565E-107
Average 1.2823E-216 1.0331E+24 9.3615E-12 9.3889E+01 7.9961E+01 2.1559E+02 6.7175E-05 3.4440E-12 4.4487E+05 7.9742E+00 3.6638E-36 4.9380E-108
Best 4.2658E-220 5.7983E+02 5.3561E-12 7.5642E+01 5.4524E+01 1.4414E+02 6.3534E-05 5.3007E-13 2.3050E+02 1.4311E+00 2.9744E-43 1.0290E-239
STD 0.0000E+00 2.0662E+24 3.3725E-12 1.3906E+01 3.0258E+01 1.1203E+02 3.5184E-06 3.5477E-12 8.7472E+05 7.0079E+00 4.0658E-36 1.3064E-107
F3
Worst 0.0000E+00 8.1600E+04 2.1600E+02 1.6500E+04 1.6400E+05 1.6700E+05 3.3700E+03 1.2200E+01 6.1400E+04 1.5200E+05 5.5300E+05 6.7725E-202
Average 0.0000E+00 7.1900E+04 6.0200E+01 1.3900E+04 1.2800E+05 1.2000E+05 1.6200E+03 3.2800E+00 5.6400E+04 8.9000E+04 3.8900E+05 9.6750E-203
Best 0.0000E+00 5.7400E+04 1.8300E+00 9.0400E+03 8.9100E+04 8.7600E+04 2.7700E+02 8.4100E-02 5.2100E+04 3.3500E+04 3.1100E+05 0.0000E+00
STD 0.0000E+00 1.0300E+04 1.0400E+02 3.4400E+03 3.8900E+04 3.7200E+04 1.5800E+03 5.9400E+00 4.6600E+03 5.6500E+04 1.1100E+05 0.0000E+00
F4
Worst 3.8171E-217 7.0400E+08 6.8700E+08 7.5600E+08 6.8000E+08 8.8900E+08 8.5300E+08 5.9300E+08 8.0000E+08 7.3000E+08 7.9800E+08 2.1946E-103
Average 1.1726E-217 6.5100E+08 6.1800E+08 6.5100E+08 5.5900E+08 7.6100E+08 6.4500E+08 5.3700E+08 6.7700E+08 6.3100E+08 6.9800E+08 3.1352E-104
Best 1.7827E-220 5.5800E+08 4.4000E+08 5.5300E+08 4.4700E+08 6.7300E+08 4.8300E+08 4.9100E+08 4.5800E+08 4.5000E+08 6.4900E+08 2.6621E-187
STD 0.0000E+00 6.4000E+07 1.1900E+08 8.3200E+07 9.5400E+07 9.2300E+07 1.5600E+08 4.2300E+07 1.5100E+08 1.2400E+08 6.7800E+07 8.2950E-104
F5
Worst 1.6754E-02 7.2100E+07 4.8600E+01 1.4500E+05 9.1000E+07 2.5400E+07 4.8800E+01 4.8700E+01 3.2100E+07 5.6800E+07 4.8800E+01 4.8890E+01
Average 7.2723E-03 5.0400E+07 4.7900E+01 6.0800E+04 4.2900E+07 1.6500E+07 4.8700E+01 4.8700E+01 2.4000E+07 2.5200E+07 4.8800E+01 3.3403E+01
Best 3.5200E-05 3.8000E+07 4.7200E+01 1.6800E+04 7.7700E+06 5.5200E+06 4.8600E+01 4.8500E+01 1.7800E+07 1.9700E+06 4.8800E+01 6.3248E+00
STD 7.1591E-03 1.5000E+07 7.6000E-01 6.0300E+04 3.7000E+07 8.2200E+06 1.0600E-01 1.0900E-01 6.5700E+06 2.7600E+07 2.8700E-02 2.1293E+01
F6
Worst 3.9756E-03 2.8600E+04 6.7700E+00 8.9100E+01 3.5200E+04 2.9000E+04 7.9100E+00 5.2600E+00 1.6600E+04 8.9800E+03 8.3900E+00 4.4631E+00
Average 1.0981E-03 2.0300E+04 6.3700E+00 6.9000E+01 2.3700E+04 2.4100E+04 7.1100E+00 4.3300E+00 1.0700E+04 4.0200E+03 6.5500E+00 3.0079E+00
Best 9.1128E-07 1.4200E+04 5.6700E+00 4.9100E+01 1.3600E+04 2.1700E+04 6.2300E+00 3.6900E+00 5.7800E+03 4.0400E+02 5.4400E+00 2.3585E-01
STD 1.6565E-03 6.0600E+03 4.7900E-01 1.7900E+01 9.3400E+03 3.3400E+03 6.9100E-01 7.1400E-01 4.4800E+03 3.7600E+03 1.3500E+00 1.6904E+00
F7
Worst 1.2267E-03 4.0400E+02 1.7000E-02 3.2000E+02 3.0500E+01 3.1500E+01 5.0400E-02 8.1400E-03 1.2200E+01 2.0200E+01 3.0800E-02 3.0226E-03
Average 5.3134E-04 3.0000E+02 6.7800E-03 2.0100E+02 1.5200E+01 1.8800E+01 2.6900E-02 4.8000E-03 1.0500E+01 1.5200E+01 1.6200E-02 1.0741E-03
Best 1.5038E-05 2.4800E+02 1.0800E-03 1.2200E+02 1.9000E+00 9.0300E+00 1.2100E-02 2.4700E-03 8.5100E+00 4.5600E+00 7.2900E-03 1.4281E-04
STD 5.1254E-04 7.0200E+01 7.1200E-03 9.0000E+01 1.1800E+01 1.0300E+01 1.7400E-02 2.4900E-03 1.6900E+00 7.2200E+00 1.0900E-02 1.1286E-03
F8
Worst -6.9100E+03 -8.2500E+03 -7.9100E+03 -2.8200E+03 -4.2000E+03 -9.0300E+03 -6.8400E+03 -1.0400E+04 -8.6400E+03 -3.6700E+03 -8.6000E+03 -2.0822E+04
Average -1.0100E+04 -9.3000E+03 -1.0700E+04 -3.9000E+03 -5.6700E+03 -9.0300E+03 -7.7000E+03 -1.1400E+04 -9.0800E+03 -4.0200E+03 -1.2400E+04 -2.0887E+04
Best -1.2800E+04 -9.8500E+03 -1.2800E+04 -5.2700E+03 -6.6100E+03 -9.0300E+03 -8.8800E+03 -1.2600E+04 -9.6100E+03 -4.2500E+03 -1.5000E+04 -2.0947E+04
STD 2.0800E+03 7.2300E+02 2.0800E+03 1.0200E+03 1.1200E+03 0.0000E+00 8.9100E+02 9.6400E+02 4.3700E+02 2.4800E+02 2.9900E+03 5.2103E+01
F9
Worst 0.0000E+00 6.9200E+02 9.9800E-01 4.7400E+02 5.3200E+02 4.3700E+02 3.0600E+01 0.0000E+00 4.3600E+02 3.5600E+02 0.0000E+00 0.0000E+00
Average 0.0000E+00 6.0200E+02 4.9900E-01 3.5900E+02 4.5100E+02 3.8000E+02 2.0800E+01 0.0000E+00 3.8300E+02 2.0300E+02 0.0000E+00 0.0000E+00
Best 0.0000E+00 5.2200E+02 1.1400E-13 3.0200E+02 3.0900E+02 2.9500E+02 8.9400E+00 0.0000E+00 3.1100E+02 1.0700E+02 0.0000E+00 0.0000E+00
STD 0.0000E+00 7.0000E+01 5.7600E-01 8.0700E+01 9.8900E+01 6.7400E+01 1.0800E+01 0.0000E+00 5.8400E+01 1.1000E+02 0.0000E+00 0.0000E+00
F10
Worst 8.8818E-16 2.0600E+01 3.5200E-08 6.3800E+00 1.8900E+01 1.7900E+01 2.1800E-04 2.3100E-12 1.9000E+01 2.0600E+01 1.4700E-13 8.8818E-16
Average 8.8818E-16 2.0000E+01 1.7600E-08 4.9700E+00 1.5500E+01 1.2700E+01 1.4400E-04 1.6000E-12 1.8300E+01 1.9500E+01 5.0600E-14 8.8818E-16
Best 8.8818E-16 1.9300E+01 8.2300E-09 4.3700E+00 1.2700E+01 1.7300E+00 9.6100E-05 2.9200E-13 1.7200E+01 1.6200E+01 4.4400E-15 8.8818E-16
STD 0.0000E+00 5.4300E-01 1.2000E-08 9.4200E-01 2.5600E+00 7.4200E+00 5.2200E-05 8.9500E-13 7.7600E-01 2.1900E+00 6.5800E-14 0.0000E+00
F11
Worst 0.0000E+00 2.1700E+02 7.9900E-15 1.3300E+02 1.2800E+02 2.5700E+02 7.6800E-02 1.0500E-02 1.6300E+02 2.2100E+01 0.0000E+00 0.0000E+00
Average 0.0000E+00 1.5300E+02 2.4700E-15 1.1700E+02 9.0500E+01 2.2600E+02 4.7100E-02 2.6300E-03 1.0300E+02 1.4600E+01 0.0000E+00 0.0000E+00
Best 0.0000E+00 1.1300E+02 0.0000E+00 8.9700E+01 4.3000E+01 2.0500E+02 5.2200E-06 0.0000E+00 7.0300E+01 2.5800E+00 0.0000E+00 0.0000E+00
STD 0.0000E+00 4.4500E+01 3.7400E-15 1.9400E+01 3.7900E+01 2.4700E+01 3.3000E-02 5.2600E-03 4.1600E+01 8.8100E+00 0.0000E+00 0.0000E+00
F12
Worst 3.4745E-06 7.2887E+07 3.5673E-01 2.2947E+01 7.4787E+05 4.7065E+07 7.4009E-01 2.0077E-01 1.9431E+07 9.2098E+07 7.0376E-01 5.7213E-01
Average 1.0767E-06 3.6137E+07 3.0089E-01 1.4439E+01 4.7637E+05 1.5716E+07 6.1270E-01 1.3741E-01 1.0097E+07 6.4479E+07 4.7881E-01 1.5052E-01
Best 6.2530E-08 1.6941E+07 2.5770E-01 9.8132E+00 1.6807E+01 2.1230E+06 4.2030E-01 7.6591E-02 2.1004E+06 1.3318E+07 2.2526E-01 1.9706E-03
STD 1.4585E-06 2.5708E+07 4.6545E-02 5.8116E+00 3.3844E+05 2.1337E+07 1.5289E-01 5.5152E-02 7.4632E+06 3.5021E+07 2.3845E-01 2.4430E-01
F13
Worst 1.4249E-04 1.7700E+08 4.3400E+00 1.2400E+03 5.5200E+07 1.7800E+08 4.6200E+00 4.7000E+00 4.0000E+07 2.1200E+08 4.4500E+00 4.9432E+00
Average 6.4589E-05 1.2900E+08 4.1100E+00 3.3800E+02 1.9100E+07 9.6700E+07 4.0500E+00 4.2200E+00 2.5500E+07 9.3600E+07 3.7500E+00 2.0861E+00
Best 1.2283E-05 7.4000E+07 3.8200E+00 3.2200E+01 4.1300E+06 2.6500E+07 3.5900E+00 3.7100E+00 7.5900E+06 1.9100E+07 3.2100E+00 4.2197E-04
STD 6.6508E-05 4.4100E+07 2.2000E-01 5.9900E+02 2.4300E+07 7.7100E+07 4.9100E-01 4.0800E-01 1.3400E+07 8.2600E+07 5.4500E-01 2.5937E+00
(W|L|T) (7|3|3) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|12|1) (0|12|1) (0|13|0) (0|11|2) (2|9|2)
Mean 1.3077E+00 1.0538E+01 4.3846E+00 8.1538E+00 8.9231E+00 1.0154E+01 5.9231E+00 3.4615E+00 8.8462E+00 8.9231E+00 4.6154E+00 1.7692E+00
Ranking 1 12 4 7 9 11 6 3 8 9 5 2
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Table 11: Results of the comparative methods on classical test functions (F1-F13), the dimension is fixed to 100.

Fun No. Comparative methods

Measure AO GOA EO PSO DA ALO GWO MPA SSA SCA WOA SMA
F1
Worst 0.0000E+00 3.9700E+04 2.3000E-17 1.3900E+02 1.7200E+04 5.7700E+04 1.0400E-06 2.5900E-21 2.0400E+04 1.5700E+04 9.7200E-41 2.6189E-160
Average 0.0000E+00 3.5100E+04 6.2100E-18 1.0300E+02 1.1800E+04 3.4800E+04 5.1900E-07 1.5600E-21 1.8900E+04 9.4400E+03 2.4300E-41 5.2392E-161
Best 0.0000E+00 3.1200E+04 2.0900E-19 7.6100E+01 7.0700E+03 1.7900E+04 2.1300E-07 3.7200E-22 1.7500E+04 4.8200E+03 2.7400E-47 0.0000E+00
STD 0.0000E+00 3.6500E+03 1.1200E-17 2.9100E+01 5.2900E+03 2.0100E+04 3.6400E-07 1.0300E-21 1.1900E+03 4.9700E+03 4.8600E-41 1.1711E-160
F2
Worst 9.2889E-217 1.1452E+21 5.2919E-09 7.7670E+01 2.0112E+02 2.1207E+02 1.6321E-04 4.2119E-13 2.9650E+06 3.7443E+00 1.0113E-20 2.2415E-108
Average 5.0995E-217 2.8631E+20 3.3539E-09 6.0455E+01 1.4725E+02 2.0087E+02 9.6421E-05 1.5599E-13 7.4137E+05 2.1442E+00 2.5286E-21 4.4830E-109
Best 2.1750E-218 2.2804E+07 1.0910E-09 4.1852E+01 7.4817E+01 1.8230E+02 4.5429E-05 5.0701E-14 1.4328E+02 6.7898E-01 6.1115E-30 1.1235E-256
STD 0.0000E+00 5.7262E+20 1.8478E-09 1.8648E+01 5.8095E+01 1.3305E+01 5.3157E-05 1.7731E-13 1.4824E+06 1.6112E+00 5.0564E-21 1.0024E-108
F3
Worst 0.0000E+00 8.7200E+04 5.9900E+01 1.5700E+04 1.9800E+05 1.7800E+05 6.8400E+02 1.8400E+00 6.5900E+04 9.5600E+04 4.7900E+05 4.9870E-188
Average 0.0000E+00 6.7100E+04 1.7900E+01 1.2400E+04 1.2800E+05 1.3000E+05 4.6100E+02 4.9400E-01 5.6000E+04 6.7800E+04 3.8200E+05 9.9741E-189
Best 0.0000E+00 5.4200E+04 4.4000E-02 1.0700E+04 5.5900E+04 9.1100E+04 1.4000E+02 5.1200E-07 4.6300E+04 4.0300E+04 3.0400E+05 0.0000E+00
STD 0.0000E+00 1.4500E+04 2.8500E+01 2.3400E+03 5.7900E+04 3.9000E+04 2.2900E+02 8.9900E-01 8.6300E+03 2.8100E+04 7.6700E+04 0.0000E+00
F4
Worst 8.1471E-219 6.6000E+01 7.8600E-03 2.8400E+01 5.5300E+01 7.0900E+01 1.4800E+00 1.0900E-08 6.9600E+01 8.9700E+01 9.8200E+01 1.3547E-98
Average 2.5154E-219 6.2700E+01 4.2000E-03 2.4800E+01 4.3900E+01 5.5400E+01 1.1700E+00 5.9700E-09 6.5100E+01 7.9500E+01 8.5400E+01 2.7108E-99
Best 1.2027E-221 5.5400E+01 4.2300E-04 2.1900E+01 3.2900E+01 3.5100E+01 8.8100E-01 2.8900E-09 5.2700E+01 6.9000E+01 5.4600E+01 2.9552E-153
STD 0.0000E+00 4.9500E+00 3.1900E-03 3.2900E+00 9.3700E+00 1.4900E+01 3.1200E-01 3.7100E-09 8.2800E+00 8.6500E+00 2.0600E+01 6.0578E-99
F5
Worst 1.0092E-01 1.3800E+08 4.8000E+01 3.6600E+04 1.6900E+07 3.1200E+07 4.8800E+01 4.8700E+01 3.3300E+07 3.1200E+07 4.8900E+01 9.8885E+01
Average 2.4782E-02 9.1100E+07 4.7900E+01 2.8000E+04 9.5300E+06 1.9400E+07 4.8700E+01 4.8400E+01 1.2300E+07 1.6600E+07 4.8800E+01 6.0627E+01
Best 6.5611E-04 4.4100E+07 4.7500E+01 1.9200E+04 2.2100E+05 8.8800E+06 4.8600E+01 4.7900E+01 3.8100E+06 7.6500E+05 4.8700E+01 4.9378E-01
STD 4.2755E-02 4.4500E+07 2.6000E-01 9.6200E+03 8.6800E+06 9.2700E+06 1.1200E-01 3.7400E-01 1.4100E+07 1.6700E+07 6.8400E-02 5.2351E+01
F6
Worst 2.1929E-03 2.5744E+04 6.2188E+00 1.3322E+02 3.3508E+04 4.2545E+04 7.3563E+00 5.1809E+00 1.4103E+04 5.2709E+03 7.3056E+00 1.4490E+01
Average 5.4323E-04 1.9595E+04 5.9007E+00 6.3916E+01 1.6152E+04 2.7833E+04 6.9873E+00 4.0499E+00 1.0800E+04 3.0192E+03 6.9144E+00 1.0255E+01
Best 1.2605E-05 1.2858E+04 5.4759E+00 3.0782E+01 5.2722E+03 1.9855E+04 5.9623E+00 2.7927E+00 7.1065E+03 4.9268E+02 6.3303E+00 8.7579E-01
STD 9.2961E-04 5.2781E+03 3.5111E-01 4.7639E+01 1.3542E+04 1.0379E+04 6.8377E-01 1.1065E+00 3.3932E+03 1.9831E+03 4.1399E-01 5.5614E+00
F7
Worst 1.5608E-03 4.8350E+02 9.1935E-03 2.6149E+02 4.3638E+01 3.0933E+01 2.7556E-02 4.5624E-03 1.6360E+01 2.2357E+01 1.7910E-02 2.6144E-03
Average 8.9547E-04 3.6677E+02 6.4348E-03 9.5848E+01 1.9206E+01 1.7896E+01 1.9682E-02 2.1244E-03 1.1079E+01 1.3982E+01 9.3010E-03 1.4817E-03
Best 1.1121E-04 2.4063E+02 5.1110E-03 3.1747E+01 8.1894E+00 7.1799E+00 1.2770E-02 3.0150E-04 8.7359E+00 5.7753E+00 4.0999E-03 2.8307E-04
STD 7.0387E-04 1.1768E+02 1.8724E-03 1.1103E+02 1.6431E+01 1.0755E+01 7.0929E-03 1.7809E-03 3.5519E+00 7.4866E+00 6.2593E-03 1.0280E-03
F8
Worst -6.4064E+03 -8.9826E+03 -8.4348E+03 -2.7692E+03 -3.6225E+03 -9.0295E+03 -6.6831E+03 -1.0349E+04 -8.1524E+03 -3.4601E+03 -9.5209E+03 -4.0264E+04
Average -9.9172E+03 -9.8724E+03 -1.0147E+04 -3.9191E+03 -5.0974E+03 -9.0536E+03 -7.8497E+03 -1.1362E+04 -8.5828E+03 -3.8878E+03 -1.0332E+04 -4.1488E+04
Best -1.2910E+04 -1.0458E+04 -1.0847E+04 -5.8528E+03 -6.3641E+03 -9.1259E+03 -8.8646E+03 -1.3138E+04 -9.0583E+03 -4.0823E+03 -1.2162E+04 -4.1895E+04
STD 2.4531E+03 6.5467E+02 1.1508E+03 1.3438E+03 1.2780E+03 4.8210E+01 1.1649E+03 1.2581E+03 4.0865E+02 2.8768E+02 1.2436E+03 6.9282E+02
F9
Worst 0.0000E+00 7.0663E+02 2.0900E+00 3.3931E+02 5.6783E+02 3.7412E+02 1.7930E+01 0.0000E+00 4.0301E+02 1.7052E+02 0.0000E+00 0.0000E+00
Average 0.0000E+00 6.6341E+02 5.2251E-01 2.9352E+02 4.5123E+02 3.3656E+02 1.4038E+01 0.0000E+00 3.5050E+02 7.2797E+01 0.0000E+00 0.0000E+00
Best 0.0000E+00 6.2961E+02 5.6843E-14 2.4692E+02 3.8412E+02 2.9418E+02 8.7782E+00 0.0000E+00 3.2658E+02 2.6505E+01 0.0000E+00 0.0000E+00
STD 0.0000E+00 3.1910E+01 1.0450E+00 3.7772E+01 8.2045E+01 4.0240E+01 4.1669E+00 0.0000E+00 3.6131E+01 6.6103E+01 0.0000E+00 0.0000E+00
F10
Worst 8.8818E-16 1.9924E+01 1.6431E-13 1.9307E-02 8.4589E+00 1.6272E+01 7.8494E-10 2.5757E-14 3.4042E+00 4.3402E-01 2.9310E-14 8.8818E-16
Average 8.8818E-16 1.9423E+01 1.0303E-13 9.4472E-03 7.7682E+00 9.8105E+00 4.1539E-10 9.7700E-15 1.8245E+00 1.0968E-01 1.1546E-14 8.8818E-16
Best 8.8818E-16 1.8952E+01 4.3521E-14 3.3824E-04 7.0928E+00 2.3170E+00 6.4845E-11 4.4409E-15 1.1551E+00 6.6117E-04 8.8818E-16 8.8818E-16
STD 0.0000E+00 4.0023E-01 5.3909E-14 8.0172E-03 6.7957E-01 5.7527E+00 3.2156E-10 1.0658E-14 1.0672E+00 2.1623E-01 1.2644E-14 0.0000E+00
F11
Worst 0.0000E+00 5.8841E-01 2.0230E-02 3.1030E+01 1.5024E+01 4.5986E-01 5.9418E-02 3.9454E-02 3.2876E-01 6.7533E-01 3.0136E-01 0.0000E+00
Average 0.0000E+00 5.4089E-01 5.0574E-03 9.0836E+00 5.9464E+00 2.2969E-01 2.7528E-02 1.6716E-02 1.9871E-01 3.7989E-01 1.3220E-01 0.0000E+00
Best 0.0000E+00 4.5020E-01 0.0000E+00 5.4626E-01 2.6364E+00 1.1258E-01 1.1102E-16 0.0000E+00 7.1478E-02 4.4130E-04 0.0000E+00 0.0000E+00
STD 0.0000E+00 6.1730E-02 1.0115E-02 1.4657E+01 6.0586E+00 1.5614E-01 3.1985E-02 1.9918E-02 1.0506E-01 3.3104E-01 1.5560E-01 0.0000E+00
F12
Worst 2.2090E-05 5.3071E+04 1.9912E-02 4.2285E-04 4.4872E+06 4.3171E+01 6.4279E-02 2.5172E-03 9.9366E+00 3.2393E-01 3.5385E-01 1.0142E+00
Average 7.3398E-06 1.3376E+04 7.2748E-03 1.3397E-04 1.1218E+06 2.4414E+01 5.6330E-02 7.8564E-04 4.5891E+00 2.2991E-01 1.9968E-01 4.3739E-01
Best 6.8016E-08 2.2231E+01 4.8091E-05 3.6038E-06 1.0234E+01 1.3639E+01 4.1262E-02 3.8885E-10 1.2334E+00 1.5004E-01 1.3770E-01 2.5910E-03
STD 8.7088E-06 2.6463E+04 9.4262E-03 1.9609E-04 2.2436E+06 1.3499E+01 1.0417E-02 1.1914E-03 3.7974E+00 7.6710E-02 1.0328E-01 4.0437E-01
F13
Worst 4.2673E-05 3.7036E+04 7.7126E-01 2.1318E-02 8.4145E+05 3.1735E+01 6.0130E-01 1.1813E-01 3.0647E-01 6.8286E-01 7.3070E-01 9.8429E+00
Average 1.8432E-05 1.4949E+04 2.8896E-01 5.4671E-03 2.3951E+05 1.3111E+01 3.8014E-01 3.7320E-02 1.6538E-01 5.4638E-01 4.4940E-01 5.2416E+00
Best 2.5705E-07 5.8035E+01 9.9259E-02 1.7087E-05 2.4995E+03 1.9905E+00 2.1468E-01 2.7350E-04 1.7032E-02 4.6047E-01 1.5378E-01 4.0715E-01
STD 1.6556E-05 1.8163E+04 3.2255E-01 1.0568E-02 4.0346E+05 1.2893E+01 1.6531E-01 5.4378E-02 1.1949E-01 9.6117E-02 3.2217E-01 4.3678E+00
(W|L|T) (9|1|3) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|12|1) (1|9|3)
Mean 1.3077E+00 1.0615E+01 4.0769E+00 7.2308E+00 9.9231E+00 9.7692E+00 5.6923E+00 2.9231E+00 8.4615E+00 8.6154E+00 5.4615E+00 3.3077E+00
Ranking 1 12 4 7 11 10 6 2 8 9 5 3
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Table 12: Results of the comparative methods on classical test functions (F1-F13), the dimension is fixed to 500.

Fun No. Comparative methods

Measure AO GOA EO PSO DA ALO GWO MPA SSA SCA WOA SMA
F1
Worst 0.0000E+00 9.1900E+04 4.2300E-12 2.2800E+03 4.8100E+04 1.2500E+05 3.0300E-03 2.6200E-22 9.4500E+04 2.1100E+04 9.4900E-24 1.8453E-149
Average 0.0000E+00 8.8900E+04 1.5300E-12 1.6700E+03 3.7400E+04 9.0600E+04 1.6800E-03 1.3400E-22 7.6100E+04 1.5500E+04 2.6700E-24 3.6907E-150
Best 0.0000E+00 8.1900E+04 1.3700E-13 1.2300E+03 2.7400E+04 5.9200E+04 7.6900E-04 4.7200E-24 5.8900E+04 1.0900E+04 1.4800E-37 0.0000E+00
STD 0.0000E+00 4.7000E+03 1.9100E-12 4.5400E+02 8.7000E+03 3.0700E+04 9.8500E-04 1.0600E-22 1.4600E+04 5.1900E+03 4.5800E-24 8.2526E-150
F2
Worst 2.6672E-215 1.7200E+137 5.0800E-06 1.6200E+161 1.2400E+03 2.6900E+247 2.9500E+00 1.9400E-10 1.3300E+171 2.3100E+02 3.9300E-21 5.8913E-92
Average 1.4218E-215 4.3100E+136 3.8000E-06 4.0500E+160 1.0400E+03 6.7200E+246 1.8200E+00 1.0600E-10 3.3200E+170 1.7800E+02 1.1800E-21 1.1783E-92
Best 1.4735E-217 2.2500E+103 2.7300E-06 1.0400E+67 7.1600E+02 2.0600E+03 3.9600E-01 1.3800E-11 1.6900E+132 1.3500E+02 6.4100E-25 3.7965E-197
STD 0.0000E+00 8.6100E+136 1.1200E-06 6.5500E+04 2.2500E+02 6.5500E+04 1.1400E+00 9.5200E-11 6.5500E+04 4.3900E+01 1.8700E-21 2.6347E-92
F3
Worst 0.0000E+00 7.6400E+06 2.0100E+05 2.7100E+06 1.7000E+07 1.0500E+07 1.0500E+06 8.7700E+04 8.5100E+06 1.2300E+07 1.4400E+08 5.9228E-193
Average 0.0000E+00 6.0500E+06 1.1800E+05 1.5500E+06 1.1500E+07 8.1300E+06 8.8900E+05 4.8900E+04 5.6900E+06 8.5600E+06 8.5600E+07 1.2030E-193
Best 0.0000E+00 3.3900E+06 3.6100E+04 7.8500E+05 5.9700E+06 4.8100E+06 7.3800E+05 1.5100E+04 2.7900E+06 6.2900E+06 3.3800E+07 0.0000E+00
STD 0.0000E+00 1.8700E+06 9.3200E+04 8.7800E+05 4.6900E+06 2.3900E+06 1.4700E+05 3.9200E+04 2.3500E+06 2.6000E+06 5.7100E+07 0.0000E+00
F4
Worst 6.3989E-217 9.5500E+01 9.8200E+01 6.3300E+01 9.9500E+01 8.8300E+01 9.0900E+01 1.2100E-05 9.7600E+01 9.9700E+01 9.9600E+01 2.3802E-82
Average 2.5832E-217 8.9700E+01 7.5500E+01 5.8300E+01 9.8600E+01 8.4100E+01 8.0600E+01 3.5700E-06 9.7100E+01 9.9600E+01 9.2400E+01 4.7605E-83
Best 6.2842E-219 8.7000E+01 5.2500E+01 5.5300E+01 9.6800E+01 7.9300E+01 7.1200E+01 2.9600E-07 9.6400E+01 9.9500E+01 7.9900E+01 1.1106E-204
STD 0.0000E+00 3.9100E+00 1.9400E+01 3.5100E+00 1.2300E+00 4.4100E+00 1.0100E+01 5.7000E-06 5.5500E-01 1.1500E-01 8.7600E+00 1.0645E-82
F5
Worst 6.4568E-01 2.5900E+09 4.9900E+02 5.8700E+08 1.8100E+09 3.3700E+09 1.0700E+06 4.9900E+02 4.9200E+09 3.2100E+09 4.9800E+02 2.9883E+02
Average 1.6470E-01 2.4100E+09 4.9900E+02 5.5100E+08 1.1600E+09 2.2000E+09 6.5400E+05 4.9800E+02 4.3800E+09 2.5400E+09 4.9800E+02 2.0173E+02
Best 8.1831E-03 2.2900E+09 4.9900E+02 4.5100E+08 6.9000E+08 1.7700E+09 1.3000E+05 4.9800E+02 3.9700E+09 1.7700E+09 4.9700E+02 1.5641E+01
STD 2.6993E-01 1.2700E+08 2.5100E-02 6.6700E+07 5.3300E+08 7.8100E+08 3.9700E+05 8.9800E-02 4.0300E+08 6.1300E+08 4.2100E-01 1.3600E+02
F6
Worst 6.1400E-03 8.0834E+05 1.1851E+02 2.3018E+05 3.5784E+05 1.0929E+06 1.6278E+02 1.0815E+02 1.0545E+06 2.6911E+05 1.0385E+02 6.2300E+01
Average 1.8268E-03 7.6086E+05 1.1766E+02 2.2730E+05 3.1464E+05 1.0002E+06 1.4463E+02 1.0732E+02 9.5250E+05 2.5202E+05 1.0107E+02 5.0294E+01
Best 6.7168E-05 7.3346E+05 1.1669E+02 2.2237E+05 2.3105E+05 8.7263E+05 1.1964E+02 1.0565E+02 8.5874E+05 2.3662E+05 9.8640E+01 1.0348E+01
STD 2.5734E-03 4.1287E+04 9.1754E-01 4.2884E+03 7.2403E+04 1.1421E+05 2.2367E+01 1.4438E+00 9.8146E+04 1.6312E+04 2.6227E+00 2.2375E+01
F7
Worst 3.4682E-03 5.1100E+04 3.0500E-02 6.1800E+04 7.9200E+03 1.3900E+04 9.8500E-01 8.0900E-03 1.8700E+04 2.0700E+04 4.9200E-02 6.2744E-04
Average 9.8927E-04 4.7300E+04 1.8200E-02 5.8400E+04 4.0600E+03 1.0200E+04 7.1100E-01 4.4800E-03 1.1700E+04 1.7600E+04 3.3100E-02 5.0630E-04
Best 2.2066E-04 4.2500E+04 9.0200E-03 5.2300E+04 1.2100E+03 5.9500E+03 5.2800E-01 2.4600E-03 8.6500E+03 1.5200E+04 1.3000E-02 4.0625E-04
STD 1.3900E-03 3.5700E+03 1.0100E-02 4.3000E+03 2.8200E+03 4.1300E+03 2.1800E-01 2.4900E-03 4.7000E+03 2.7400E+03 1.5500E-02 7.9220E-05
F8
Worst -1.3853E+04 -3.3200E+04 -3.8500E+04 -9.5600E+03 -1.5000E+04 -9.0300E+04 -1.0200E+04 -5.1000E+04 -2.6700E+04 -1.2100E+04 -1.2600E+05 -1.1666E+05
Average -1.8631E+04 -3.7000E+04 -4.2600E+04 -1.1900E+04 -1.7000E+04 -9.0300E+04 -2.9100E+04 -5.5300E+04 -3.2500E+04 -1.3300E+04 -1.3900E+05 -1.2362E+05
Best -2.2142E+04 -3.9500E+04 -4.5800E+04 -1.5600E+04 -1.9000E+04 -9.0300E+04 -3.6300E+04 -5.9600E+04 -3.7300E+04 -1.4500E+04 -1.5000E+05 -1.2564E+05
STD 2.9872E+03 2.6900E+03 3.2600E+03 2.8500E+03 1.6400E+03 0.0000E+00 1.2600E+04 4.7200E+03 4.7100E+03 1.0400E+03 9.9700E+03 3.9005E+03
F9
Worst 0.0000E+00 8.4800E+03 1.0200E+00 8.3500E+03 6.6500E+03 6.1800E+03 3.5800E+02 0.0000E+00 6.0000E+03 1.4800E+03 0.0000E+00 0.0000E+00
Average 0.0000E+00 8.1600E+03 2.5500E-01 7.8200E+03 5.9700E+03 5.7900E+03 2.7700E+02 0.0000E+00 5.9500E+03 1.2700E+03 0.0000E+00 0.0000E+00
Best 0.0000E+00 8.0400E+03 5.0600E-10 7.2600E+03 5.2700E+03 5.2900E+03 1.2100E+02 0.0000E+00 5.8700E+03 1.1400E+03 0.0000E+00 0.0000E+00
STD 0.0000E+00 2.1100E+02 5.0900E-01 5.3400E+02 5.8100E+02 3.7900E+02 1.0600E+02 0.0000E+00 5.4600E+01 1.4400E+02 0.0000E+00 0.0000E+00
F10
Worst 8.8800E-16 2.0400E+01 1.5800E-03 1.8900E+01 1.9100E+01 1.9800E+01 2.5200E+00 3.7700E-09 2.0800E+01 2.0900E+01 3.9200E-09 8.8818E-16
Average 8.8800E-16 2.0100E+01 7.0900E-04 1.8600E+01 1.8500E+01 1.3500E+01 2.1400E+00 2.4200E-09 2.0500E+01 2.0900E+01 1.2100E-09 8.8818E-16
Best 8.8800E-16 1.9800E+01 1.9100E-04 1.8300E+01 1.7300E+01 8.8800E-16 1.4800E+00 1.4100E-09 2.0200E+01 2.0900E+01 1.1100E-10 8.8818E-16
STD 0.0000E+00 2.6100E-01 6.2700E-04 2.5200E-01 8.6500E-01 9.0800E+00 4.5700E-01 1.0100E-09 2.6000E-01 2.1700E-02 1.8200E-09 0.0000E+00
F11
Worst 0.0000E+00 6.3700E+03 1.4600E-09 1.9700E+03 2.8000E+03 8.2800E+03 1.3400E+00 0.0000E+00 6.6500E+03 2.2400E+03 0.0000E+00 0.0000E+00
Average 0.0000E+00 5.7200E+03 7.4500E-10 1.8900E+03 2.0500E+03 6.4600E+03 1.1400E+00 0.0000E+00 6.5100E+03 1.6500E+03 0.0000E+00 0.0000E+00
Best 0.0000E+00 5.2900E+03 2.6200E-10 1.8100E+03 1.4400E+03 5.5700E+03 9.1900E-01 0.0000E+00 6.1500E+03 7.9500E+02 0.0000E+00 0.0000E+00
STD 0.0000E+00 4.8400E+02 5.1900E-10 6.6700E+01 5.6400E+02 1.2300E+03 1.7100E-01 0.0000E+00 2.4100E+02 6.2600E+02 0.0000E+00 0.0000E+00
F12
Worst 2.2090E-05 6.3500E+03 7.0800E-09 2.0600E+03 3.2400E+03 6.2400E+03 1.2800E+00 0.0000E+00 6.1600E+03 3.3600E+03 1.1100E-16 1.0142E+00
Average 7.3398E-06 5.8700E+03 3.6600E-09 1.9300E+03 2.1300E+03 5.4900E+03 1.0100E+00 0.0000E+00 5.6500E+03 2.2300E+03 2.7800E-17 4.3739E-01
Best 6.8016E-08 5.4400E+03 5.5000E-10 1.8300E+03 1.2300E+03 4.2900E+03 3.6700E-01 0.0000E+00 5.2500E+03 1.3000E+03 0.0000E+00 2.5910E-03
STD 8.7088E-06 3.7500E+02 2.8000E-09 9.7300E+01 8.6500E+02 8.6100E+02 4.3100E-01 0.0000E+00 3.8300E+02 8.8600E+02 5.5500E-17 4.0437E-01
F13
Worst 4.2673E-05 7.7972E+09 4.9839E+01 2.8311E+08 2.7634E+09 7.8310E+09 3.0577E+02 4.9837E+01 8.6217E+09 1.0576E+10 4.7792E+01 9.8429E+00
Average 1.8432E-05 7.1971E+09 4.9581E+01 2.6358E+08 1.5912E+09 7.2341E+09 2.0353E+02 4.9799E+01 7.8299E+09 8.8182E+09 3.9005E+01 5.2416E+00
Best 2.5705E-07 6.5728E+09 4.9172E+01 2.4510E+08 1.1179E+09 6.6313E+09 1.0472E+02 4.9764E+01 7.2658E+09 6.5647E+09 3.0093E+01 4.0715E-01
STD 1.6556E-05 6.0494E+08 2.9263E-01 1.5540E+07 7.8420E+08 5.7852E+08 8.3825E+01 3.7117E-02 6.3361E+08 1.7158E+09 8.0546E+00 4.3678E+00
(W|L|T) (9|3|1) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (0|13|0) (1|11|1) (0|13|0) (0|13|0) (1|11|1) (1|11|1)
Mean 1.9231E+00 9.6923E+00 4.6154E+00 8.2308E+00 8.9231E+00 9.0769E+00 6.0769E+00 3.0769E+00 1.0077E+01 9.5385E+00 3.7692E+00 2.0000E+00
Ranking 1 11 5 7 8 9 6 3 12 10 4 2
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Table 13: Review of CEC2017 benchmark function problems.

Type No. Description Fi*
Unimodal functions 1 Shifted and Rotated Bent Cigar Function 100

3 Shifted and Rotated Zakharov Function 300
Simple Multimodal Functions 4 Shifted and Rotated Rosenbrock’s Function 400

5 Shifted and Rotated Rastrigin’s Function 500
6 Shifted and Rotated Expanded Scaffer’s F6 Function 600
7 Shifted and Rotated Lunacek Bi-Rastrigin Function 700
8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
9 Shifted and Rotated Levy Function 900
10 Shifted and Rotated Schwefel’s Function 1000

Hybrid functions 11 Hybrid Function 1 (N=3) 1100
12 Hybrid Function 2 (N=3) 1200
13 Hybrid Function 3 (N=3) 1300
14 Hybrid Function 4 (N=4) 1400
15 Hybrid Function 5 (N=4) 1500
16 Hybrid Function 6 (N=4) 1600
17 Hybrid Function 6 (N=5) 1700
18 Hybrid Function 6 (N=5) 1800
19 Hybrid Function 6 (N=5) 1900
20 Hybrid Function 6 (N=6) 2000

Composition Functions 21 Composition Function 1 (N=3) 2100
22 Composition Function 2 (N=3) 2200
23 Composition Function 3 (N=4) 2300
24 Composition Function 4 (N=4) 2400
25 Composition Function 5 (N=5) 2500
26 Composition Function 6 (N=5) 2600
27 Composition Function 7 (N=6) 2700
28 Composition Function 8 (N=6) 2800
29 Composition Function 9 (N=3) 2900
30 Composition Function 10 (N=3) 3000

10. By inspecting these curves, one can see that the AO exhibits the fastest convergence for (F5, F9, F16,405

F20, F21, F24, F28, and F30) and a comparable convergence for (F1, F11, F14, F15, F18, F22, and F 27).

This observation states that AO can be considered as one of the reliable algorithms.
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Table 14: Results of the comparative methods on CEC2017 test functions.

Fun No. Comparative methods

Measure AO GA PSO CS GWO SSA EO GSA CMA-ES
F1
Average 2.9600E+02 9.8000E+03 3.9600E+03 2.9600E+02 3.2500E+05 3.4000E+03 2.4700E+03 2.9600E+02 1.0000E+02
STD 2.7500E+02 5.9400E+03 4.4600E+03 2.7500E+02 1.0700E+05 3.6700E+03 2.2100E+03 2.7500E+02 0.0000E+00
F3
Average 1.1420E+03 8.7200E+03 3.0000E+02 1.0800E+04 1.5400E+03 3.0000E+02 3.0000E+02 1.0800E+04 3.0000E+02
STD 2.3500E+02 5.9000E+03 1.9000E-10 1.6000E+03 1.8900E+03 0.0000E+00 2.4000E-08 1.6200E+03 0.0000E+00
F4
Average 4.0600E+02 4.1100E+02 4.0600E+02 4.0700E+02 4.1000E+02 4.0600E+02 4.0400E+02 4.0700E+02 4.0000E+02
STD 8.5600E+00 1.8500E+01 3.2800E+00 2.9200E+00 7.5500E+00 1.0100E+01 7.9100E-01 2.9200E+00 0.0000E+00
F5
Average 5.1100E+02 5.1600E+02 5.1300E+02 5.5700E+02 5.1400E+02 5.2200E+02 5.1100E+02 5.5700E+02 5.3000E+02
STD 7.1540E+01 6.9300E+00 6.5400E+00 8.4100E+00 6.1000E+00 1.0500E+01 3.6700E+00 8.4000E+00 5.8300E+01
F6
Average 6.2376E+02 6.0000E+02 6.0000E+02 6.2200E+02 6.0100E+02 6.1000E+02 6.0000E+02 6.2200E+02 6.8200E+02
STD 1.3928E+01 6.6800E-02 9.8000E-01 9.0200E+00 8.8000E-01 8.2600E+00 1.5000E-04 9.0200E+00 3.5400E+01
F7
Average 7.1500E+02 7.2800E+02 7.1900E+02 7.1500E+02 7.3000E+02 7.4100E+02 7.2100E+02 7.1500E+02 7.1300E+02
STD 1.8520E+00 7.2900E+00 5.1000E+00 1.5600E+00 8.6000E+00 1.6600E+01 5.7400E+00 1.5500E+00 1.6300E+00
F8
Average 8.2000E+02 8.2100E+02 8.1100E+02 8.2100E+02 8.1400E+02 8.2300E+02 8.1000E+02 8.2100E+02 8.2900E+02
STD 7.2560E+00 8.9600E+00 5.4700E+00 4.6900E+00 8.2600E+00 9.9500E+00 2.9200E+00 4.6900E+00 5.3000E+01
F9
Average 9.0000E+02 9.1000E+02 9.0000E+02 9.0000E+02 9.1100E+02 9.4400E+02 9.0000E+02 9.0000E+02 4.6700E+03
STD 0.0000E+00 1.5200E+01 5.9000E-14 0.0000E+00 1.9500E+01 1.0500E+02 2.2700E-02 5.9000E-15 2.0600E+03
F10
Average 1.7060E+03 1.7200E+03 1.4700E+03 2.6900E+03 1.5300E+03 1.8600E+03 1.4200E+03 2.6900E+03 2.5900E+03
STD 3.6200E+02 2.5200E+02 2.1500E+02 2.9800E+02 2.8700E+02 2.9500E+02 2.6200E+02 2.9800E+02 4.1400E+02
F11
Average 1.1250E+03 1.1300E+03 1.1100E+03 1.1300E+03 1.1400E+03 1.1800E+03 1.1100E+03 1.1300E+03 1.1100E+03
STD 2.3150E+01 2.3800E+01 6.2800E+00 1.0500E+01 5.4100E+01 5.9800E+01 5.0200E+00 1.0500E+01 2.5400E+01
F12
Average 1.0031E+04 3.7300E+04 1.4500E+04 7.1000E+05 6.2500E+05 1.9800E+06 1.0300E+04 7.0300E+05 1.6300E+03
STD 2.3200E+02 3.4800E+04 1.1300E+04 4.2000E+05 1.1300E+06 1.9100E+06 9.7900E+03 4.2100E+04 1.9800E+02
F13
Average 8.0190E+03 1.0800E+04 8.6000E+03 1.1100E+04 9.8400E+03 1.6100E+04 8.0200E+03 1.1100E+04 1.3200E+03
STD 5.6234E+03 8.9300E+03 5.1200E+03 2.1100E+03 5.6300E+03 1.0500E+04 6.7200E+03 2.1100E+03 7.8300E+01
F14
Average 1.4490E+03 7.0500E+03 1.4800E+03 7.1500E+03 3.4000E+03 1.5100E+03 1.4600E+03 7.1500E+03 1.4500E+03
STD 5.4000E+01 8.1600E+03 4.2500E+01 1.4900E+03 1.9500E+03 5.1100E+01 3.2500E+01 1.4900E+03 5.6000E+01
F15
Average 1.7100E+03 9.3000E+03 1.7100E+03 1.8000E+04 3.8100E+03 2.2400E+03 1.5900E+03 1.8000E+04 1.5100E+03
STD 2.7600E+02 8.9800E+03 2.8300E+02 5.5000E+03 3.8600E+03 5.7100E+02 4.8000E+01 5.5000E+03 1.6400E+01
F16
Average 1.6240E+03 1.7900E+03 1.8600E+03 2.1500E+03 1.7300E+03 1.7300E+03 1.6500E+03 2.1500E+03 1.8200E+03
STD 4.0000E+01 1.2900E+02 1.2800E+02 1.0600E+02 1.2400E+02 1.2700E+02 5.0900E+01 1.0600E+02 2.3000E+02
F17
Average 1.7420E+03 1.7500E+03 1.7600E+03 1.8600E+03 1.7600E+03 1.7700E+03 1.7300E+03 1.8600E+03 1.8300E+03
STD 2.9000E+01 3.9800E+01 4.7500E+01 1.0800E+02 3.1300E+01 3.4200E+01 1.8100E+01 1.0800E+02 1.7600E+02
F18
Average 8.7120E+03 1.5700E+04 1.4600E+04 8.7200E+03 2.5800E+04 2.3400E+04 2.2500E+04 8.7200E+03 1.8300E+03
STD 3.2510E+03 1.2800E+04 1.1900E+04 5.0600E+03 1.5800E+04 1.4000E+04 1.1400E+04 5.0600E+03 1.3500E+01
F19
Average 1.9440E+03 9.6900E+03 2.6000E+03 4.5000E+04 9.8700E+03 2.9200E+03 1.9500E+03 1.3700E+04 1.9200E+03
STD 3.0000E+01 6.7700E+03 2.1900E+03 1.9000E+04 6.3700E+03 1.8700E+03 4.7100E+01 1.9200E+04 2.8700E+01
F20
Average 2.0180E+03 2.0600E+03 2.0900E+03 2.2700E+03 2.0800E+03 2.0900E+03 2.0200E+03 2.2700E+03 2.4900E+03
STD 2.1000E+01 6.0000E+01 6.2300E+01 8.1700E+01 5.2000E+01 4.9300E+01 2.2300E+01 8.1700E+01 2.4300E+02
F21
Average 2.2050E+03 2.3000E+03 2.2800E+03 2.3600E+03 2.3200E+03 2.2500E+03 2.3100E+03 2.3600E+03 2.3200E+03
STD 4.0000E+01 4.3800E+01 5.4000E+01 2.8200E+01 7.0000E+00 6.0400E+01 2.1000E+01 2.8200E+01 6.7800E+01
F22
Average 2.3050E+03 2.3000E+03 2.3100E+03 2.3000E+03 2.3100E+03 2.3000E+03 2.3000E+03 2.3000E+03 3.5300E+03
STD 2.2000E+01 2.3800E+00 6.6100E+01 7.0000E-02 1.6800E+01 1.1800E+01 1.8400E+01 7.2000E-02 8.4800E+02
F23
Average 2.6200E+03 2.6300E+03 2.6200E+03 2.7400E+03 2.6200E+03 2.6200E+03 2.6200E+03 2.7400E+03 2.7300E+03
STD 1.2000E+01 1.3400E+01 9.2300E+00 3.9100E+01 8.4700E+00 8.6900E+00 5.5300E+00 3.9100E+01 2.4300E+02
F24
Average 2.6860E+03 2.7600E+03 2.6900E+03 2.7400E+03 2.7400E+03 2.7300E+03 2.7400E+03 2.7400E+03 2.7000E+03
STD 1.6000E+01 1.4900E+01 1.0800E+02 5.5500E+00 8.7300E+00 6.4400E+01 6.9000E+00 5.5200E+00 7.3400E+01
F25
Average 2.9190E+03 2.9500E+03 2.9200E+03 2.9400E+03 2.9400E+03 2.9200E+03 2.9300E+03 2.9400E+03 2.9300E+03
STD 1.9100E+01 1.9300E+01 2.5000E+01 1.5300E+01 2.3600E+01 2.3900E+01 1.9800E+01 1.5400E+01 2.0900E+01
F26
Average 3.0060E+03 3.1100E+03 2.9500E+03 3.4400E+03 3.2200E+03 2.9000E+03 2.9700E+03 3.4400E+04 3.4600E+03
STD 1.4500E+02 3.3500E+02 2.5000E+02 6.2900E+02 4.2700E+02 3.6600E+01 1.6500E+02 6.2900E+02 5.9900E+02
F27
Average 3.0900E+03 3.1200E+03 3.1200E+03 3.2600E+03 3.1000E+03 3.0900E+03 3.0910E+03 3.2600E+03 3.1400E+03
STD 8.3700E+00 1.9200E+01 2.5000E+01 4.1700E+01 2.1800E+01 2.7800E+00 2.2400E+00 4.1700E+01 2.1400E+01
F28
Average 3.2110E+03 3.3200E+03 3.3200E+03 3.4600E+03 3.3900E+03 3.2100E+03 3.3000E+03 3.4600E+03 3.4000E+03
STD 4.6840E+01 1.2600E+02 1.2200E+02 3.3800E+01 1.0200E+02 1.1300E+02 1.3400E+02 3.3800E+01 1.3100E+02
F29
Average 3.1900E+03 3.2500E+03 3.2000E+03 3.4500E+03 3.1900E+03 3.2100E+03 3.1700E+03 3.4500E+03 3.2100E+03
STD 2.9000E+01 8.2000E+01 5.2300E+01 1.7100E+02 4.2900E+01 5.1700E+01 2.4700E+01 1.7100E+02 1.1000E+02
F30
Average 2.9014E+05 5.3700E+05 3.5100E+05 9.4000E+05 2.9800E+05 4.2100E+05 2.9700E+05 1.3000E+06 3.0500E+05
STD 5.2314E+04 6.3700E+05 5.0500E+05 3.6000E+05 5.2800E+05 5.6800E+05 4.5900E+05 3.6400E+05 4.4500E+05
(W|L|T) (9|13|7) (0|27|2) (0|23|6) (0|24|5) (0|28|1) (3|21|5) (0|24|5) (0|24|5) (8|17|3)
Mean 2.4138E+00 5.6207E+00 3.4828E+00 6.3448E+00 5.3793E+00 4.8276E+00 2.5517E+00 6.3793E+00 4.6552E+00
Ranking 1 7 3 8 6 5 2 9 4
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Figure 10: Convergence behavior of the comparative algorithms on CEC2017 test functions.
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Table 15: Review of CEC2019 benchmark function problems.

No. Functions F ∗i = Fi(x
∗) Dim Search range

1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [-8192, 8192]
2 Inverse Hilbert Matrix Problem 1 16 [-16384, 16384]
3 Lennard-Jones Minimum Energy Cluster 1 18 [-4,4]
4 Rastrigin’s Function 1 10 [-100,100]
5 Griewangk’s Function 1 10 [-100,100]
6 Weierstrass Function 1 10 [-100,100]
7 Modified Schwefel’s Function 1 10 [-100,100]
8 Expanded Schaffer’s F6 Function 1 10 [-100,100]
9 Happy Cat Function 1 10 [-100,100]
10 Ackley Function 1 10 [-100,100]

4.3. Results comparisons using CEC2019 test functions

This section details the AO analysis while testing with ten functions of recent CEC benchmarks (CEC2019);

the specification of the functions has been listed in Table 15. The AO has been implemented with 500 it-410

erations and 50 population sizes for 30 independent runs. Its results compared with GOA EO, PSO, DA,

ALO, and GWO, MPA, SSA, SCA, WOA, and SMA. The comparison has performed through the worst,

average, best, and STD values by the considered algorithms across the course of the functions, as reported

in Table 16. Moreover, the Friedman mean rank values and final ranks have involved in the last lines of the

table (see Table 16). The results confirm the proposed AO’s superiority in dealing with these challenging415

test-bed functions, as it is classified as the best algorithm for half of these functions.

Meanwhile, the MPA success for three functions, the EO, and SMA for only one function out of this

set. Sequentially, AO is located in the first position regarding the chain counterparts. The convergence

curves of Figure 11 shows the efficiency of the AO in converging for high qualified solutions with significant

convergence speed as exhibited in F1, F7, F8, and F10.420
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Table 16: Results of the comparative methods on CEC2019 test functions.

Fun No. Comparative methods

Measure AO GOA EO PSO DA ALO GWO MPA SSA SCA WOA SMA
F1
Worst 5.7185E+04 4.0133E+10 2.8491E+09 2.1499E+13 3.6220E+10 5.3112E+10 3.2839E+08 4.4140E+04 1.1307E+10 1.2002E+10 1.2404E+11 59119.21888
Average 4.8726E+04 1.3203E+10 9.3131E+08 8.0403E+12 2.1128E+10 2.4366E+10 1.0739E+08 3.7464E+04 7.3245E+09 4.6112E+09 5.7448E+10 49496.82449
Best 3.9908E+04 2.9754E+09 3.9735E+04 8.1972E+11 1.2918E+10 4.5166E+09 5.1689E+05 3.2396E+04 2.4621E+09 1.3097E+09 1.5327E+09 43022.95047
STD 6.4128E+03 1.5418E+10 1.3273E+09 8.6372E+12 9.2900E+09 2.2029E+10 1.5077E+08 4.7886E+03 3.4825E+09 4.2196E+09 4.7046E+10 7249.678206
F2
Worst 1.7343E+01 1.7468E+01 1.7343E+01 1.5848E+04 6.0358E+02 1.7349E+01 1.7344E+01 1.7343E+01 1.7391E+01 1.7538E+01 1.7363E+01 17.37579915
Average 1.7343E+01 1.7397E+01 1.7343E+01 1.2323E+04 1.3515E+02 1.7345E+01 1.7344E+01 1.7343E+01 1.7355E+01 1.7468E+01 1.7354E+01 17.36710062
Best 1.7343E+01 1.7367E+01 1.7343E+01 8.2815E+03 1.7343E+01 1.7343E+01 1.7344E+01 1.7343E+01 1.7343E+01 1.7414E+01 1.7346E+01 17.35597052
STD 1.3292E-04 4.0848E-02 5.0243E-15 3.0180E+03 2.6186E+02 2.2146E-03 1.3962E-04 1.2596E-07 2.0765E-02 4.6095E-02 6.1916E-03 0.007884415
F3
Worst 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2705E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2703E+01 1.2702E+01 12.70432773
Average 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2703E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2703E+01 1.2702E+01 12.70285328
Best 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2703E+01 1.2702E+01 12.70247222
STD 1.8286E-06 8.1884E-12 1.5384E-15 0.0000E+00 1.1169E-03 8.8818E-16 1.7866E-06 0.0000E+00 1.7764E-15 8.1441E-05 7.4263E-07 0.000824434
F4
Worst 7.7626E+01 5.4726E+01 2.4077E+01 2.3904E+01 3.2190E+03 1.1342E+02 1.6793E+02 1.2958E+01 4.8753E+01 3.6227E+03 8.6610E+02 40.86124872
Average 6.1750E+01 3.2867E+01 1.7864E+01 1.7327E+01 1.2762E+03 5.6115E+01 7.5948E+01 8.9948E+00 3.4226E+01 1.9761E+03 5.8922E+02 26.12215256
Best 4.2306E+01 8.9569E+00 6.9995E+00 4.9752E+00 3.4288E+01 1.0945E+01 4.9114E+01 5.0030E+00 2.1889E+01 1.0981E+03 2.2660E+02 10.42762116
STD 1.3914E+01 1.9711E+01 6.8265E+00 7.3781E+00 1.4697E+03 3.7118E+01 5.1553E+01 3.3786E+00 1.0776E+01 9.6264E+02 2.8278E+02 11.4476303
F5
Worst 1.4154E+00 9.7766E+00 1.1442E+01 1.1279E+01 1.0841E+01 8.5764E+00 1.2052E+01 4.0291E+00 6.2782E+00 1.1812E+01 1.1329E+01 1.754317948
Average 1.3545E+00 8.4847E+00 1.0754E+01 9.9834E+00 9.6346E+00 5.2938E+00 1.1649E+01 2.3349E+00 5.4861E+00 1.1146E+01 9.6370E+00 1.374072236
Best 1.1530E+00 7.6595E+00 9.8895E+00 8.8972E+00 8.5186E+00 2.9803E+00 1.1464E+01 1.2088E+00 4.5119E+00 9.8660E+00 8.2812E+00 1.136743818
STD 9.3665E-02 8.7632E-01 6.6035E-01 9.3240E-01 8.8471E-01 2.3569E+00 2.3951E-01 1.2762E+00 8.5332E-01 7.5113E-01 1.1535E+00 0.234609845
F6
Worst 1.0058E+01 9.7766E+00 1.1442E+01 1.1279E+01 1.0841E+01 1.2191E+01 1.2052E+01 1.4029E+01 6.2782E+00 1.1812E+01 1.1329E+01 5.044147869
Average 8.3144E+00 8.4847E+00 1.0754E+01 9.9834E+00 9.6346E+00 1.1480E+01 1.1649E+01 1.2335E+01 5.4861E+00 1.1146E+01 9.6370E+00 4.43199477
Best 4.6493E+00 7.6595E+00 9.8895E+00 8.8972E+00 8.5186E+00 1.0921E+01 1.1464E+01 1.1209E+01 4.5119E+00 9.8660E+00 8.2812E+00 3.547038584
STD 2.1161E+00 8.7632E-01 6.6035E-01 9.3240E-01 8.8471E-01 4.7370E-01 2.3951E-01 1.1276E+01 8.5332E-01 7.5113E-01 1.1535E+00 0.666906413
F7
Worst 3.8973E+02 7.6818E+02 5.4218E+02 4.1544E+02 1.2605E+03 1.3979E+03 6.5949E+02 1.4602E+02 5.6388E+02 1.0631E+03 1.1302E+03 556.5354916
Average 2.7780E+02 5.0079E+02 2.0373E+02 2.0108E+02 9.4774E+02 6.5560E+02 3.5348E+02 4.7289E+01 4.6133E+02 8.5032E+02 8.0560E+02 228.1812071
Best 2.0976E+02 2.4958E+02 -2.2288E+02 -3.4109E+00 4.9273E+02 1.8713E+02 1.2363E+02 -8.8834E+01 2.8857E+02 4.7767E+02 4.6215E+02 -95.13810593
STD 7.0498E+01 2.1911E+02 2.8572E+02 1.7996E+02 3.0667E+02 4.4719E+02 2.2858E+02 9.7761E+01 1.1757E+02 2.2416E+02 2.5333E+02 283.8794351
F8
Worst 6.0065E+00 6.1986E+00 5.6001E+00 5.6265E+00 6.4732E+00 6.1027E+00 6.8118E+00 4.8994E+00 6.7080E+00 6.6863E+00 6.6408E+00 5.531143673
Average 5.0660E+00 5.5874E+00 3.9066E+00 4.9495E+00 5.9517E+00 5.7015E+00 5.4830E+00 4.0886E+00 5.4825E+00 5.9026E+00 6.1017E+00 5.312594537
Best 3.9924E+00 5.1592E+00 2.4154E+00 4.3550E+00 5.2004E+00 5.1209E+00 2.8996E+00 2.5565E+00 4.8619E+00 5.3787E+00 5.6658E+00 5.133001884
STD 7.8631E-01 4.3007E-01 1.1569E+00 6.1698E-01 4.9292E-01 3.9215E-01 1.6897E+00 9.1352E-01 7.1055E-01 5.7395E-01 4.2379E-01 0.171064613
F9
Worst 2.4328E+00 2.9754E+00 2.4823E+00 2.4437E+00 1.9550E+02 2.8278E+00 7.1355E+00 2.4978E+00 2.9267E+00 4.5935E+02 6.4013E+00 2.566742354
Average 2.3908E+00 2.6643E+00 2.4025E+00 2.4115E+00 5.6366E+01 2.6040E+00 4.9324E+00 2.4163E+00 2.7329E+00 2.0256E+02 5.3971E+00 2.496126373
Best 2.3533E+00 2.5188E+00 2.3641E+00 2.3873E+00 2.7440E+00 2.4148E+00 3.2719E+00 2.3484E+00 2.3814E+00 4.5225E+01 3.9548E+00 2.455247496
STD 3.1720E-02 1.8276E-01 4.8202E-02 3.3764E-02 8.0061E+01 1.7406E-01 1.5294E+00 5.9561E-02 2.1946E-01 1.5775E+02 9.3385E-01 0.042546944
F10
Worst 2.0279E+01 2.0001E+01 2.0475E+01 2.0671E+01 2.0639E+01 2.0088E+01 2.0603E+01 2.1035E+01 2.0003E+01 2.0552E+01 2.0459E+01 20.27673685
Average 1.6292E+01 2.0000E+01 2.0410E+01 2.0422E+01 2.0436E+01 2.0017E+01 2.0546E+01 2.1007E+01 2.0000E+01 2.0478E+01 2.0299E+01 20.09974459
Best 7.6041E-01 2.0000E+01 2.0323E+01 2.0122E+01 2.0288E+01 1.9999E+01 2.0482E+01 2.1000E+01 1.9998E+01 2.0417E+01 2.0208E+01 20.01121164
STD 8.6827E+00 3.7182E-04 5.6102E-02 2.0165E-01 1.3960E-01 3.9305E-02 4.5221E-02 3.5626E-02 1.8765E-03 5.8884E-02 1.0182E-01 0.103332342
(W|L|T) (5|5|0) (0|10|0) (1|8|1) (0|9|1) (0|10|0) (0|9|1) (0|10|0) (3|6|1) (0|10|0) (0|10|0) (0|10|0) (1|9|0)
Mean 2.7000E+00 6.4000E+00 4.6000E+00 6.0000E+00 9.8000E+00 6.6000E+00 8.2000E+00 4.1000E+00 5.6000E+00 1.0100E+01 8.7000E+00 4.8000E+00
Ranking 1 7 3 6 11 8 9 2 5 12 10 4
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Figure 11: Convergence behavior of the comparative algorithms on CEC2019 test functions.

4.4. Real-world applications

In this section, the proposed algorithm is evaluated in solving seven constrained real engineering prob-

lems, namely tension/compression spring design problem, pressure vessel design problem, welded beam

design problem, 3-bar truss design problem, speed reducer problem, cantilever beam design problem, and

multiple disc clutch brake problem. These problems contain several inequality constraints. The death425

penalty function is used in which the algorithm obtains significant values if it violates any of the constraints.
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The parameter settings are set as the previous experiments.

4.4.1. Tension/compression spring design problem

The goal of this problem is to minimize the weight of the tension/compression spring by selecting the

best values of the following parameters wire diameter (d), the number of active coils (N), and mean coil430

diameter (D). Figure 12 shows the problem style and the mathematical form is given in Equation (18).

The proposed AO is compared with the following optimization algorithms, GSA [26], OBSCA [63], CPSO

[64], CC [65], RO [66], HS [67], CSCA [68], GA [69], WOA [21], MVO [10], PSO [64], ES [70]. The results

are listed in Table 17 and showed that the AO obtained the best results than all other algorithms.

Furthermore, Figure 13 illustrates the curves of the objective values, the trajectory of 1st solution, and the435

convergence of the AO during solving the problem.

Figure 12: Tension/compression spring design problem.

Consider ~x = [x1 x2 x3] = [d D N ],

Minimize f(~x) = (x3 + 2)x2x
2
1,

Subject to g1(~x) = 1− x3
2x3

71785x4
1

6 0,

g2(~x) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1

5108x2
1

6 0,

g3(~x) = 1− 140.45x1

x2
2x3

6 0,

g4(~x) =
x1 + x2

1.5
− 1 6 0,

V ariables range 0.05 6 x1 6 2

0.25 6 x2 6 1.30

2.00 6 x3 6 15

(18)
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Table 17: Results of the comparative algorithms for solving the tension/compression spring design problem.

Algorithm Optimal values for variables Optimal Ranking

d D N weight
GSA [26] 0.050276 0.323680 13.525410 0.0127022 10
OBSCA [63] 0.05230 0.31728 12.54854 0.012625 2
CPSO [64] 0.051728 0.357644 11.244543 0.0126747 5
CC [65] 70.050000 0.315900 14.250000 0.0128334 13
RO [66] 0.051370 0.349096 11.76279 0.0126788 8
HS [67] 0.051154 0.349871 12.076432 0.0126706 4
CSCA [68] 0.051609 0.354714 11.410831 0.0126702 3
GA [69] 0.051480 0.351661 11.632201 0.01270478 11
WOA [21] 0.051207 0.345215 12.004032 0.0126763 7
MVO [10] 0.05251 0.37602 10.33513 0.012790 12
PSO [64] 0.051728 0.357644 11.244543 0.0126747 5
ES [70] 0.051643 0.355360 11.397926 0.012698 9
AO 0.0502439 0.35262 10.5425 0.011165 1

Figure 13: Qualitative results for the tension/compression spring design problem.

4.4.2. Pressure vessel design problem

This problem tries to minimize the total cost of the cylindrical pressure vessel to match the pressure

requirements. 14 exhibits the style of this problem. Four variables in this problem need to be minimized

(i.e., the thickness of the shell (Ts), the inner radius (R), the thickness of the head (Th), and the length of

the cylindrical section(L)). There are also four constraints, as follows:

Consider ~x = [x1 x2 x3 x4] = [Ts Th R L],

Minimize 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3,

Subject to g1(~x) = −x1 + 0.0193x3 6 0,

g2(~x) = −x2 + 0.00954x3 6 0,

g3(~x) = −πx2
3x4 −

4

3
πx3

3 + 1296000 6 0,

g4(~x) = x4 − 240 6 0,
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Figure 14: Pressure vessel design problem

Table 18: Results of the comparative algorithms for solving the pressure vessel design problem.

Algorithm Optimal values for variables Optimal Ranking

Ts Th R L cost
Branch-bound [71] 1.125 0.625 48.97 106.72 7982.5 15
HS [67] 1.125000 0.625000 58.29015 43.69268 7197.730 14
MVO [10] 0.8125 0.4375 42.090738 176.73869 6060.8066 12
WOA [21] 0.812500 0.437500 42.0982699 176.638998 6059.7410 9
ACO [72] 0.812500 0.437500 42.098353 176.637751 6059.7258 7
ES [70] 0.8125 0.4375 42.098087 176.640518 6059.74560 10
HPSO [73] 0.8125 0.4375 42.0984 176.6366 6059.7143 5
CSS [74] 0.8125 0.4375 42.1036 176.5727 6059.0888 4
CSCA [68] 0.8125 0.4375 42.098411 176.63769 6059.7340 8
PSO-SCA [75] 0.8125 0.4375 42.098446 176.6366 6059.71433 6
GWO [76] 0.8125 0.4345 42.0892 176.7587 6051.5639 3
GA [69] 0.81250 0.43750 42.097398 176.65405 6059.94634 11
CPSO [64] 0.8125 0.4375 42.091266 176.7465 6061.0777 13
GSA [9] 1.125 0.625 55.9886598 84.4542025 8538.8359 6
SMA [62] 0.7931 0.3932 40.6711 196.2178 5994.1857 2
AO 1.0540 0.182806 59.6219 38.8050 5949.2258 1

V ariables range 0 6 x1 6 99,

0 6 x2 6 99,

10 6 x3 6 200,

10 6 x4 6 200

(19)

The AO is compared with branch-bound [71], HS [67], MVO [10], WOA [21], ACO [72], ES [70], HPSO

[73], CSS [74], CSCA [68], PSO-SCA [75], GWO [76], GA [69], CPSO [64], GSA [9], SMA [62]. From440

the results in Table 18 we can see that, the AO was ranked first and reached the minimum total cost in

solving pressure vessel design problem. In addition, Figure 15 shows the curves of the objective values, the

trajectory of 1st solution, and the convergence of the AO during solving the problem.
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Figure 16: Welded beam design problem.

Figure 15: Qualitative results for the pressure vessel design problem

4.4.3. Welded beam design problem

This problem aims to minimize the economic cost of the welded beam design. The design of this problem445

is shown in Figure 16. Four variables and seven constraints need to be optimized. These variables are the

thickness of the weld (h), the thickness of the bar (bb), length of the attached part of the bar (l), and the

height of the bar (tt). The mathematical form is listed in Equation (20).

Table 19 listed the results of the AO and the compared algorithms namely OBSCA [63], GSA [26], RO

[66], CSCA [68], GA [77], DAVID [78], SIMPLEX [78], APPROX [78], HS [79], SSA [22], CPSO [64], WOA450

[21], MVO [10], MPA [24], SMA [62]. From this table we can noticed that, the AO outperformed all other

algorithms and obtained the minimum value of the total cost. Figure 17 shows the curves of the AO during

solving the problem.
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Consider ~x = [x1 x2 x3 x4] = [h l tt bb],

Minimize f(~x) = 1.10471x21x2 + 0.04811x3x4(14.0 + x2),

Subject to g1(~x) = τ(~x)− τmax 6 0,

g2(~x) = σ(~x)− σmax 6 0,

g3(~x) = δ(~x)− δmax 6 0,

g4(~x) = x1 − x4 6 0,

g5(~x) = P − Pc(~x) 6 0,

g6(~x) = 0.125− x1 6 0,

g7(~x) = 1.10471x21 + 0.04811x3x4(14.0 + x2)− 5.0 6 0

V ariables range 0.1 6 x1 6 2,

0.1 6 x2 6 10,

0.1 6 x3 6 10,

0.1 6 x4 6 2

where τ(~x) =

√
(τ ′)2 + 2τ ′τ ′′

x2
2R

+ (τ ′′)2,

τ
′
=

p√
2x1x2

, τ
′′
=
MR

J
,

M = P (L+
x2
2
),

R =

√
x22
4

+ (
x1 + x3

2
)2,

J = 2

{√
2x1x2

[
x2
2
4

+ (x1+x3
2

)2
]}

,

σ(~x) =
6PL

x4x23
, δ(~x) =

6PL3

Ex23x4

Pc(~x) =

4.013E

√
x2
3x

6
4

36

L2
(1− x3

2L

√
E

4G
),

P = 6000 lb, L = 14 in., δmax = 0.25 in.,

E = 30× 16 psi, G = 12× 106 psi,

τmax = 13600 psi, σmax = 30000 psi

(20)
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Table 19: Results of the comparative algorithms for solving the welded beam design problem.

Algorithm Optimal values for variables Optimal Raanking

h l t b cost
OBSCA [63] 0.230824 3.069152 8.988479 0.208795 1.722315 3
GSA [26] 0.182129 3.856979 10.000 0.202376 1.87995 11
RO [66] 0.203687 3.528467 9.004233 0.207241 1.735344 10
CSCA [68] 0.203137 3.542998 9.033498 0.206179 1.733461 9
GA [77] 0.2489 6.1730 8.1789 0.2533 2.4300 15
DAVID [78] 0.2434 6.2552 8.2915 0.2444 2.3841 14
SIMPLEX [78] 0.2792 5.6256 7.7512 0.2796 2.5307 16
APPROX [78] 0.2444 6.2189 8.2915 0.2444 2.3815 13
HS [79] 0.2442 6.2231 8.2915 0.2400 2.3807 12
SSA [22] 0.2057 3.4714 9.0366 0.2057 1.72491 5
CPSO [64] 0.202369 3.544214 9.04821 0.205723 1.72802 7
WOA [21] 0.205396 3.484293 9.037426 0.206276 1.730499 8
MVO [10] 0.205463 3.473193 9.044502 0.205695 1.72645 6
MPA [24] 0.205728 3.470509 9.036624 0.205730 1.724853 4
SMA [62] 0.2054 3.2589 9.0384 0.2058 1.69604 2
AO 0.1631 3.3652 9.0202 0.2067 1.6566 1

Figure 17: Qualitative results for the welded beam design problem.

4.4.4. 3-bar truss design problem455

The 3-bar truss design is a problem in the field of civil engineering. It tries to manipulate two parameters

in order to achieve the minimum weight in designing a truss. Figure 18 shows the design of this problem

and its mathematical form is given in Equation (21).

The AO is compared with Ray and Sain [80], AAA [81], SSA [22], MBA [82], DEDS [83], GOA [26],

PSO-DE [75], CS [20]. The comparison results are listed in Table 20 and showed the superiority of the AO460

in solving this problem. Figure 19 shows the curves of the AO during solving the problem.
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Table 20: Results of the comparative algorithms for solving the 3-bar truss design problem.

Algorithm Optimal values for variables Optimal Ranking

x1 x2 weight
Ray and Sain [80] 0.795 0.395 264.3 9
AAA [81] 0.7887354 0.408078 263.895880 6
SSA [22] 0.78866541 0.408275784 263.89584 2
MBA [82] 0.7885650 0.4085597 263.89585 5
DEDS [83] 0.78867513 0.40824828 263.89584 2
GOA [26] 0.78889755557 0.40761957011 263.89588149 7
PSO-DE [75] 0.7886751 0.4082482 263.89584 2
CS [20] 0.78867 0.40902 263.9716 8
AO 0.7926 0.3966 263.8684 1

Figure 18: 3-bar truss design problem.

Consider ~x = [x1 x2] = [A1 A2],

Minimize f(~x) = (2
√

2x1 + x2) ∗ l,

Subject to g1(~x) =

√
2x1 + x2√

2x21 + 2x1x2

P − σ 6 0,

g2(~x) =
x2√

2x21 + 2x1x2

P − σ 6 0,

g3(~x) =
1

√
2x2 + x1

P − σ 6 0,

V ariables range 0 6 x1, x2 6 1,

where l = 100 cm, P = 2 KN/cm2, σ = 2 KN/cm2

(21)
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Figure 19: Qualitative results for the 3-bar truss design problem.

4.4.5. Speed reducer problem

This problem tries to minimize the speed reducer’s total weights by optimizing seven variables regarding

the limitations of the gear teeth’ curvature stress, transverse deflections of the shafts, and stresses in the465

shafts, and surface stress. Figure 20 shows the design of this problem, and its mathematical form is given

in Equation (22).

The AO is compared with GA [84], SES [85], PSO [86], GSA [9], hHHO-SCA [87], MDA [88], SCA [38],

HS [89], FA [90], and SBSM [91]. The results of the AO and the compared methods are listed in Table 21.

From this table, the AO is ranked first and outperformed all methods in solving this problem whereas, the470

SBSM is ranked second followed by FA, MDA, and SES, respectively. Figure 21 shows the curves of the AO

during solving the problem.

Figure 20: Speed reducer problem.
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Table 21: Results of the comparative algorithms for solving the speed reducer design problem.

Algorithm Optimal values for variables Optimal Ranking

x1 x2 x3 x4 x5 x6 x7 weight
GA [84] 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561 10
SES [85] 3.506163 0.700831 17 7.460181 7.962143 3.362900 5.308949 3025.005127 5
PSO [86] 3.5001 0.7000 17.0002 7.5177 7.7832 3.3508 5.2867 3145.922 11
GSA [9] 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120 9
hHHO-SCA [87] 3.506119 0.7 17 7.3 7.99141 3.452569 5.286749 3029.873076 7
MDA [88] 3.5 0.7 17 7.3 7.670396 3.542421 5.245814 3019.583365 4
SCA [38] 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563 8
HS [89] 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002 6
FA [90] 3.507495 0.7001 17 7.719674 8.080854 3.351512 5.287051 3010.137492 3
SBSM [91] 3.506122 0.700006 17 7.549126 7.859330 3.365576 5.289773 3008.08 2
AO 3.5021 0.7000 17.0000 7.3099 7.7476 3.3641 5.2994 3007.7328 1

Minimize f(~x) = 0.7854x1x
2
2(3.3333x

2
3 + 14.9334x3 − 43.0934)− 1.508x1(x

2
6 + x27) + 7.4777(x36 + x37)

subject to

s.t.g1(~x) =
27

x1x22x3
− 1 ≤ 0

g2(~x) =
397.5

x1x22x
2
3

− 1 ≤ 0

g3(~x) =
1.93x34
x2x3x46

− 1 ≤ 0

g4(~x) =
1.93x35
x2x3x47

− 1 ≤ 0

g5(~x) =

√
(
745x4
x2x3

)2 + 16.9× 106

110.0x36
− 1 ≤ 0

g6(~x) =

√
(
745x4
x2x3

)2 + 157.5× 106

85.0x36
− 1 ≤ 0

g7(~x) =
x2x3
40
− 1 ≤ 0

g8(~x) =
5x2
x1
− 1 ≤ 0

g9(~x) =
x1

12x2
− 1 ≤ 0

g10(~x) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(~x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

where

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

(22)
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Figure 21: Qualitative results for the speed reducer design problem.

4.4.6. Cantilever beam design problem

This problem is a type of concrete engineering problems. It works to minimize the total weight of a475

cantilever beam by optimizing the hollow square cross-section parameters. Figure 22 shows the design of

this problem and its mathematical form is given in Equation (23).

Figure 22: Cantilever beam design problem.

Consider x = [x1 x2 x3 x4 x5]

Minimise f(~x) = 0.6224(x1 + x2 + x3 + x4 + x5),

subject to

g(~x) =
60

x3
1

+
27

x3
2

+
19

x3
3

+
7

x3
4

+
1

x3
5

− 1 ≤ 0

V ariable range

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100

(23)

To evaluate the performance of the proposed AO in solving this problem, it was compared with GCA I

[92], ALO [93], GCA II [92], CS [20], MMA [92], SOS [94], SMA [62], and MFO [23]. The results of the

AO and the compared methods are listed in Table 22. From this table, the AO showed a good performance480
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Table 22: Results of the comparative algorithms for solving the cantilever beam design problem.

Algorithm Optimal values for variables Optimal Ranking

x1 x2 x3 x4 x5 weight
GCA I [92] 6.0100 5.30400 4.4900 3.4980 2.1500 1.3400 7
ALO [93] 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995 3
GCA II [92] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 7
CS [20] 6.0089 5.3049 4.5023 3.5077 2.1504 1.3399 2
MMA [92] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 7
SOS [94] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 5
SMA [62] 6.017757 5.310892 4.493758 3.501106 2.150159 1.33996 4
MFO [23] 5.9830 5.3167 4.4973 3.5136 2.1616 1.33998 6
AO 5.8881 5.5451 4.3798 3.5973 2.1026 1.3390 1

in solving the cantilever beam design problem, and it came in the first rank with little difference from CS

followed by ALO and SMA, respectively. Figure 21 shows the curves of the AO during solving the problem.

Figure 23: Qualitative results for the cantilever beam design problem.

4.4.7. Multiple disc clutch brake problem

This problem works to minimize the total weight of a multiple disc clutch brake by optimizing five

variables: the thickness of discs, outer radius, number of friction surfaces, inner radius, and actuating force.485

There are eight constraints for this problem based on the conditions of geometry and operating requirements.

The feasible domain contains about 70% of the solution space. Figure 24 illustrates the design of this problem

and Equation (24) represents its mathematical model.
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Figure 24: Multiple disc clutch brake problem.
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f(x) = Π(r2
o − r2

i )t(Z + 1)ρ

subject to g1(x) = ro − ri −∆r ≥ 0

g2(x) = lmax − (Z + 1)(t+ δ) ≥ 0

g3(x) = Pmax− Prz > 0

g4(x) = Pmax νsr max − Prz νsr ≥ 0

g5(x) = νsr max − νsr ≥ 0

g6 = Tmax − T ≥ 0

g7(x) = Mh − sMs ≥ 0

g8(x) = T ≥ 0

where Mh =
2

3
µFZ

r3
o − r2

i

r2
o − r3

i

, Prz =
F

Π(r2
o − r2

i )
,

νrz =
2Π(r3

o − r3
i )

90(r2
o − r2

i )
, T =

Iz Π n

30(Mh +Mf )

∆r = 20 mm, Iz = 55 kgmm2, Pmax = 1 MPa, Fmax = 1000 N,

Tmax = 15 s, µ = 0.5, s = 1.5, Ms = 40Nm,

Mf = 3Nm, n = 250 rpm,

νsr max = 10 m/s, lmax = 30 mm, ri min = 60,

ri max = 80, ro min = 90,

ro max = 110, tmin = 1.5, tmax = 3, Fmin = 600,

Fmax = 1000, Zmin = 2, Zmax = 9

(24)

The proposed AO is compared with TLBO [95], MFO [96], NSGA-II [97], MVO [98], WCA [99], and

CMVO [98]. The comparison results are listed in Table 23 and showed the superiority of the AO in achieving490

the minimum total weights for this problem. Figure 25 illustrates the curves of the AO during solving the

problem.

53



Table 23: Results of the comparative algorithms for solving the multiple disc clutch brake problem.

Algorithm Optimal values for variables Optimal Ranking

x1 x2 x3 x4 x5 weight
TLBO [95] 70 90 1 810 3 0.313657 6
MFO [96] 70 90 1 910 3 0.313656 2
NSGA-II [97] 70 90 1.5 1000 3 0.470400 7
MVO [98] 70 90 1 910 3 0.313656 2
WCA [99] 70 90 1 910 3 0.313656 2
CMVO [98] 70 90 1 910 3 0.313656 2
AO 78.4228 98.5674 1 846.8894 2.5294 0.30835 1

Figure 25: Qualitative results for the multiple disc clutch brake problem.

5. Conclusion and potential future works

In this paper, a new alternative meta-heuristic technique, named Aquila Optimizer (AO), has been

developed. This algorithm simulates the behaviors of Aquila in nature. In the AO, the optimization495

procedures are represented in four methods; selecting the search space by high soar with the vertical stoop,

exploring within a diverge search space by contour flight with short glide attack, exploiting within a converge

search space by low flight with slow descent attack, and swooping by walk and grab prey.

To validate the developed AO’s ability to find the optimal solution, a set of different optimization prob-

lems were used. These problems include 23 classical benchmark functions, 29 functions from the CEC2017500

benchmark, ten functions from the CEC2019 benchmark, and seven engineering problems. From the sta-

tistical results of benchmarks, it has been observed that the AO provided results either better than other

well-known MH techniques or, at least, nearly equivalently. Moreover, from the empirical investigation of

engineering problems, it can evaluate the developed AO’s applicability to tackling real-world applications.

According to the previous discussion that illustrated the developed AO’s superiority, it can open a wide505

range of future works. This including apply AO to various applications such as PV parameter estimation,

neural network, image processing applications, text and data mining applications, big data applications,
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signal denoising, recourse management application, network applications, industry and engineering applica-

tions, other benchmark test functions, smart home applications, feature selection, image segmentation, task

scheduling, and other. It can also be extended to real-world applications dependent on binary, discrete, and510

multiple objectives optimization. Moreover, AO’s performance can be improved by combining it with levy

flight, disruption, mutation, other stochastic components, whether the local search or global search methods

and other evolutionary operators. Moreover, a discrete version of the AO can be proposed.
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[84] H. SARUHAN, İ. UYGUR, Design optimization of mechanical systems using genetic algorithms, Sakarya Üniversitesi Fen
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