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Supplementary Materials: Supplementary Material: “
Fractional Diffusion with Geometric Constraints: Application
to Signal Decay in Magnetic Resonance Imaging (MRI)”

Here, we start the results of applying the model to describe the behavior of the
experimental data provided in Refs. [23,24] for the cases ∆ = 10 ms and ∆ = 20 ms. The
experimental data are represented by the symbols (circle and square) and the model by the
lines (red and green) as in the manuscript. Figure S1 shows the behavior for ∆ = 10 ms
and Figure S2 shows the model and the experimental data for the case ∆ = 20 ms. In both
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Figure S1. Behavior of the model (lines green and red) and the experimental data (symbols square
and circles) for the bovine optic nerve. The parameter values obtained in the fitting process by using
the function NonlinearModelFit present in the software Mathematica for each case are µxy/2 = 0.86,
lz = 5.5× 10−2mm, ηxy = 0.36, D′xy = 2.07× 10−4 mm2/s, lz = 2.6× 10−2 mm, error = 2.32× 10−4

(estimated variance) for Sxy and ηz = 0.64, D′z = 7.46× 10−4 mm2/s, error = 3.32× 10−4 (estimated
variance) for Sz. By using the scaling argument (see Ref. [10] for details), it is possible to obtain the
behavior of the mean square displacement for each case and show that σ2

xy ∝ t0.41 and σ2
z ∝ t0.64.

cases, we have an agreement between the model and the experimental data for the bovine
optic nerve.

Now, we present and discuss other models used to analyze the experimental data
obtained from the MRI technique. One of these models is the bi-exponential, with the
attenuation function given by

S(b) = S0

(
f e−bDslow + (1− f )e−bD f ast

)
, (1)

where Dslow and D f ast are the diffusion constants for the slow and fast diffusion compart-
ments, respectively, f is the volume fraction of the slow compartment, and (1− f ) the
volume fraction of the fast compartment (for details, see Ref. [27]). Tables S1 and S2 show
the parameters obtained from using the biexponential model to fit the experimental data.
We evaluate the error, i.e., the estimated variance, as performed for the comb-model by
using the function NonlinearModelFit that is available in the software Mathematica for
the parameters present in these tables. We also use this function to evaluate the estimated
variance for the parameter values obtained for the other models.
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Figure S2. Behavior of the model (lines green and red) and the experimental data (symbols square
and circles) for the bovine optic nerve. The parameters values obtained in the fitting process by using
the function NonlinearModelFit present in the software Mathematica for each case are µxy/2 = 0.71,
ηxy = 0.41, D′xy = 1.52× 10−4 mm2/s, lz = 8.1× 10−2 mm, error = 2.76× 10−4 (estimated variance)

for Sxy and ηz = 0.59, D′z = 7.04× 10−4 mm2/s, error = 4.35× 10−4 (estimated variance) for Sz. By
using the scaling argument (see Ref. [10] for details), it is possible to obtain the behavior of the mean
square displacement for each case and show that σ2

xy ∝ t0.65 and σ2
z ∝ t0.59.

Table S1. Parameters used to fit the experimental data present in Refs. [23,24] with Eq. (1) for different
values of ∆ for the perpendicular direction. The values presented in this table, for the parameters
Dslow, D f ast, and f present in Eq. (1), were also obtained from the data in Ref. [27].

∆(×10−3 s) Dslow(×10−4 mm2/s) D f ast(×10−4 mm2/s) f error(×10−4)

30 0.23 4.15 0.41 0.63
20 0.28 4.13 0.42 0.18
10 0.70 5.86 0.55 0.10
8 1.09 7.70 0.63 0.31

Table S2. Parameters used to fit the experimental data present in Refs. [23,24] with Eq. (1) for different
values of ∆ for the parallel direction.The values presented in this table, for the parameters Dslow,
D f ast, and f present in Eq. (1), were also obtained from the data in Ref. [27].

∆(×10−3 s) Dslow(×10−4 mm2/s) D f ast(×10−4 mm2/s) f error(×10−4)

30 0.43 8.18 0.13 2.12
20 0.46 7.75 0.13 1.09
10 0.75 8.71 0.15 1.28
8 1.10 8.58 0.15 1.14

The bi-exponential model has two diffusion coefficients and, consequently, two relax-
ation processes for each direction in addition to the relative size of the two compartments
specified by the additional parameter f. This feature implies in an additional parameter
and function is used to describe the behavior of the experimental data. In this sense,
the comb-model could be extended in order to present different relaxation processes by
incorporating a different term in the diffusion equation.

Another model used to describe the experimental data is an extension of the relaxation
equation for the attenuation by considering a variable diffusion coefficient. It considers the
equation

d
db

S(b) = −D(b)S(b) , (2)
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where D(b) is an arbitrary function of b. The solution of this equation can be formally
found and is given by

S(b) = S0 exp
(
−
∫ b

0
db′D(b′)

)
. (3)

In Ref. [24,27] this equation has been applied to the bovine optical nerve by considering
some particular cases of D(b). Similar to the bi-exponential model, the different choices for
D(b) are fit to the experimental data to provide a suitable description of the experimental
behavior. One of the choices employed a stretched exponential decay rate given by

D(b) = αD0(bD1)
α−1e−(bD1)

α
(4)

yielding

S(b) = S0 exp
[
−D0

D1

(
1− e−(bD1)

α
)]

. (5)

Tables S3 and S4 show the parameters obtained from Eq. (5) to fit the experimental data
presented in Refs.[23,24] for the bovine optical nerve for the perpendicular and vertical
direction.

Table S3. Parameters used to fit the experimental data present in Refs. [23,24] with Eq. (5) for different
values of ∆ for the perpendicular direction. The values presented in this table, for the parameters D,
α, and β present in Eq. (1), were obtained from the data provided in Ref. [27].

∆(×10−3 s) D0(×10−4 mm2/s) D1(×10−4 mm2/s) α error(×10−4)

30 1.83 1.09 0.80 1.75
20 2.05 1.27 0.84 1.01
10 2.09 1.04 0.83 0.28
8 1.65 0.48 0.77 1.08

Table S4. Parameters used to fit the experimental data present in Refs. [23,24] with Eq. (5) for different
values of ∆ for the parallel direction.The values presented in this table, for the parameters D0, D1,
and α present in Eq. (1), were obtained from the data provided in Ref. [27].

∆(×10−3 s) D0(×10−4 mm2/s) D1(×10−4 mm2/s) α error(×10−4)

30 7.93 2.69 1.01 2.99
20 8.01 2.87 1.08 1.79
10 9.20 3.47 1.11 1.37
8 9.28 3.19 1.12 0.92

Another choice for D(b) is

D(b) = D0
α(bD1)

α−1

1 + (bD1)α
(6)

yielding

S(b) = S0 exp
[
−D0

D1
ln(1 + (bD1)

α)

]
. (7)

Tables S5 and S6 show the parameters obtained from using Eq. (7) to fit the experimental
data presented in Refs. [23,24] for the bovine optical nerve for the perpendicular and
vertical direction.
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Table S5. Parameters used to fit the experimental data present in Refs. [23,24] with Eq. (7) for different
values of ∆ for the perpendicular direction. The values presented in this table, for the parameters D0,
D1, and α, were also obtained from the data in Ref. [27].

∆(×10−3 s) D0(×10−4 mm2/s) D1(×10−4 mm2/s) α error(×10−4)

30 3.50 11.09 1.42 0.14
20 2.85 12.08 1.91 0.10
10 3.27 4.06 0.99 0.20
8 2.26 1.07 0.81 0.47

Table S6. Parameters used to fit the experimental data present in Refs. [23,24] with Eq. (1) for different
values of ∆ for the parallel direction.The values presented in this table, for the parameters D0, D1,
and α, were also obtained from the data in Ref. [27].

∆(×10−3 s) D0(×10−4 mm2/s) D1(×10−4 mm2/s) f error(×10−4)

30 4.94 24.31 3.95 0.70
20 8.57 19.86 1.98 1.03
10 8.11 22.10 2.39 0.24
8 9.98 14.49 1.67 0.38

Equation (2) has also been extended by incorporation of a fractional derivatives as
discussed in Ref. [24], i.e.,

dα

dbα
S(b) = −D(b)S(b) , (8)

where the fractional derivative is of the Caputo type and the D(b) = Dbβ. The solution for
this case is

S(b) = S0E
α,1+ β

α , β
α

(
−(Db)α+β

)
, (9)

where Eα,m,l(x) is the Kilba-Saigo function, which is defined as follows:

Eα,m,l(x) = 1 +
∞

∑
n=1

n−1

∏
j

Γ(1 + α(jm + l))
Γ(1 + α(jm + l + 1))

xn . (10)

Table S7. Parameters used to fit the experimental data present in Refs. [23,24] with Eq. (9) for diferent
values of ∆ for the perpendicular direction. The values presented in this table, for the parameters D,
α, and β present in Eq. (9), were obtained from the data provided in the Ref. [27].

∆(×10−3 s) D(×10−4 mm2/s) α β error(×10−4)

30 1.95 0.38 0.31 5.60
20 2.05 0.42 0.27 3.06
10 2.72 0.38 0.46 0.30
8 2.75 0.62 0.20 0.53
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Table S8. Parameters used to fit the experimental data present in Refs. [23,24] with Eq. (9) for different
values of ∆ for the parallel direction.The values presented in this table, for the parameters D, α, and β

present in Eq. (9), were obtained from the data provided in the Ref. [27].

∆(×10−3 s) D(×10−4 mm2/s) α β error(×10−4)

30 7.19 0.76 0.06 6.40
20 7.14 0.75 0.14 6.35
10 8.86 0.64 0.33 3.91
8 8.74 0.74 0.26 1.84

All of these models, as well as the comb-model, have the objective of describing the
experimental data by taking into account the characteristics of the system. It is worth
mentioning that, except for the logarithmic S(b) case, each model fits the data quite well
with errors that decrease with the diffusion time. That is, as expected, anomalous diffusion
is more pronounced when the water has a longer time (e.g., 30 ms versus 8 ms) to explore
the tissue structure. Hence, “goodness” of fit alone can not be used to favor one model over
another.
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