
Supplementary Material

SA Affect of Node Removal on Network Structural and Po-
sitional Features

The goal of the following discussion is to evaluate the effectiveness of different structure-aware
measures in capturing the impact of different event types. Figures. S1 to S6 illustrate different
type of events pertaining to graph evolution.

Figure. S1 shows the original graph. The degree centrality, node betweenness centrality and
edge betweenness centrality for all nodes and edges in the graphs are reported in table S3 and S5.
We also report the entropy variation based on the underlying three centrality measures in table S1.
Looking at table S3, we observe that nodes 3 and 5 rated slightly different from the point of view
of node betweenness centrality, which is not the case in degree centrality that considers the number
of immediate neighbours. The drawback of node betweenness centrality is that the side nodes 1,
2, 6 and 7 are scored as 0. In other words, the metric does not distinguish the importance of the
corner nodes. On the other hand, edge betweenness centrality measures the rate of which an edge
plays the role of a “bridge-like connector” between two sides of the network. As observed, there
are 4 different values assigned to 6 edges compared to 3 values in degree and node betweenness
centrality. We expect that relatively higher expressive power of edge betweenness centrality led to
better performance in dynamic link prediction task. We compare the entropy variations after the
occurrence of events.

Figure. S2 shows the graph after adding the edge (3, 6). As we see in table S9, the degree
centrality and node betweenness centrality of nodes 3 and 6 increased, and the betweenness cen-
trality of nodes 4 and 5 decreased as they are less likely to be reached after the new edge is added.
Analogously, the betweenness centrality of edges (3, 4), (4, 5), (5, 6) and (5, 7) decreased, but the
same metric almost tripled for edge (6,7), since it shares a node with newly added edge (3, 6). As
for entropy variation, the degree centrality and node betweenness centrality-based values increased;
and the one for edge betweenness centrality slightly decreased. Additionally, we observe 6 different
values of betweenness centrality assigned to 7 edges whereas there are 4 values for the node-based
measures.

Figure. S3 illustrates the graph after a new node 8 is added and a new edge (4, 8) is being
formed as a result. Expectedly, the importance of node 4 has increased and thus reflected in degree
centrality and node betweenness centrality values. At this stage nodes 3, 4 and 5 adopt same value
of degree centrality. However, this is not the case for node betweenness centrality, as this measure
is different for all three nodes. As for edge betweenness centrality the value for all edges, except the
newly added (4,8) have dropped, as adding a node and its connection to the bridge node 4, slightly
downgraded the importance of the existing side edges. In addition, the degree centrality and edge
betweenness centrality-based entropy variation has dropped negligibly, whereas the one for node
betweenness has increased. Remarkably. This may lead to the conclusion that node betweenness
centrality-based entropy variation could better highlight the impact of the structural change (which
is link formation in this case).

Figure. S4 demonstrates the graph once edge (6, 7) is removed from the original graph. As can
be seen the degree centrality of nodes 6 and 7 and betweenness centrality of node 5 reduced as a
result. In addition, the betweenness centrality of (5, 6) and (5, 7) slightly increased. The increase
in entropy variation is more highlighted once measured based on node betweenness centrality.

The graph after removal of node 3 has shown in Figure. S5. The edges (1, 3), (2, 3) and (3, 4) are
removed and nodes 1 and 2 turned into isolation. In this scenario the node betweenness centrality
for all nodes except node 5 will score zero, and node 5 takes the role of the only bridge in the graph
with an increase in betweenness centrality of its connected edges. The graph entropy based on
the underlying measure changes into a zero which indicate an extreme change of entropy variation.
Although the node betweenness centrality might not be an indicative node feature for start-like
graph, the derived/extracted metric, entropy variation could significantly express the impact of
such structural events.

Figure. S6 shows the graph after node 4, the main bridge connector of the graph with highest
node betweenness centrality and edge betweenness of its edges, is removed. Like the previous case,
the graph entropy variation based on node centrality will drop to zero. The graph breaks into 2
isolated, connected components. This is the scenario wherein a new feature, ratio of changes in the
number of components come into effect. It’s noted that we disregard the underlying feature in our
experiments, since the graphs of autonomous system are connected graphs and therefore, there is
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only connected component. Moreover, the degree centrality and edge level centrality provide the
same level of information in this scenario, since the entire graph turned into very simple graphs.

If the graph breaks down into multiple components or the number of connected components
changes after a node is removed, denoted by σGv , we can consider another node feature integrated
into our model 1− σGv

σG
. The higher the underlying coefficient would be, the more structural change

would be imposed to the graph after removal of node v. We will not add such feature to our model
at this point, since AS-733 and AS-Oregon-2 graphs are perpetually connected.
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Figure S1: Original graph represenation

Table S2: Original graph information

degree centrality node betweenness centrality edge betweenness centrality

entropy (e) 1.87 2.27 1.78

Table S4: Original graph information

nodes degree centrality node betweenness centrality

1 0.16 0
3 0.5 0.6
2 0.16 0
4 0.33 0.6
5 0.5 0.533
6 0.33 0
7 0.33 0

Table S6: Original graph information

edges edge betweenness centrality

(1,3) 0.285
(3,2) 0.285
(3,4) 0.571
(4,5) 0.571
(5,6) 0.238
(5,7) 0.238
(6,7) 0.47
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Figure S2: Adding edge (3, 6) to the original graph

Table S8: Adding edge (3,6) to the original graph

degree centrality node betweenness centrality edge between centrality

entropy (e) 1.84 2.007 1.84
entropy variation (∆e) 0.016 0.115 -0.03

Table S10: Adding edge (3,6) to the original graph

nodes degree centrality node betweenness centrality

1 0.166 0
3 0.666 0.633
2 0.166 0
4 0.333 0.1
5 0.5 0.1
6 0.5 0.3
7 0.333 0

Table S12: Adding edge (3,6) to the original graph

edges edge betweenness centrality

(1,3) 0.285
(3,2) 0.285
(3,4) 0.238
(3,6) 0.380
(4,5) 0.190
(5,6) 0.142
(5, 7) 0.95
(6, 7) 0.190
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Figure S3: Adding node 8 to the original graph

Table S14: Adding node 8 to the original graph

degree centrality node betweenness centrality edge betweenness centrality

entropy (e) 1.98 1.08 1.91
entropy variation (∆e) -0.058 0.52 -0.073

Table S16: Adding node 8 to the original graph

nodes degree centrality node betweenness centrality

1 0.142 0
3 0.428 0.523
2 0.142 0
4 0.428 0.714
5 0.428 0.476
6 0.285 0
7 0.285 0
8 0.142 0

Table S18: Adding node 8

edges edge betweenness centrality

(1,3) 0.25
(3,2) 0.25
(3,4) 0.535
(4,5) 0.535
(4,8) 0.25
(5, 6) 0.214
(5,7) 0.214
(6,7) 0.035
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Figure S4: Removing edge (6, 7) from the original graph

Table S20: Removing edge (6,7) from the original graph

degree centrality node betweenness centrality edge betweenness centrality

entropy (e) 1.82 1.09 1.73
entropy variation (∆e) 0.026 0.519 0.028

Table S22: Removing edge (6, 7) from the original graph

nodes degree centrality node betweenness centrality

1 0.166 0
3 0.5 0.6
2 0.166 0
4 0.33 0.6
5 0.5 0.6
6 0.166 0
7 0.166 0

Table S24: Removing edge (6,7) from the original graph

edges edge betweenness centrality

(1,3) 0.285
(3,2) 0.285
(3,4) 0.571
(4,5) 0.571
(5,6) 0.285
(5,7) 0.285
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Figure S5: Removing node 3 from the original graph

Table S26: Removing node 3 from the original graph

degree centrality node betweenness centrality edge betweenness centrality

entropy (e) 1.320 0 1.32
entropy variation (∆e) 0.294 1 0.258

Table S28: Removing node 3 from the original graph

nodes degree centrality node betweenness centrality

4 0.333 0
5 1 0.666
6 0.666 0
7 0.666 0

Table S30: Removing node 3

edges edge betweenness centrality

(4,5) 0.5
(5, 6) 0.333
(5,7) 0.333
(6,7) 0.166

7



Figure S6: Removing node 4 from the original graph

Table S32: Removing node 4 from the original graph

degree centrality node betweenness centrality edge betweenness centrality

entropy (e) 1.74 0 1.549
entropy variation (∆e) 0.069 1 0.13

Table S34: Removing node 4 from the original graph

nodes degree centrality node betweenness centrality

1 0.2 0
3 0.4 0.1
2 0.2 0
5 0.4 0
6 0.4 0
7 0.4 0

Table S36: Removing node 4

edges edge betweenness centrality

(1,3) 0.133
(3,2) 0.133
(5,6) 0.666
(5,7) 0.666
(6,7) 0.666
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Figure S7: Correlation between two one-dimensional temporal point process

SB Correlation Analysis between two Temporal point pro-
cesses using Ripley K function

The subsequent section solely considered the temporal dimension of the two-point process, ignoring
the spatial dimension for the time being. The goal here is to investigate the potential correlation
among the two point processes corresponding to addition and deletion types of events using K1D,
a R package designed to estimate multivariate Ripley’s K-function for one-dimensional data.

K1D computes the one-dimensional simplification of the multivariate Ripley K-function (e.g.,
time or line transects). K1D computes the dependence between two or more ordered one-dimensional
event categories [1]. The motivation for using this method is to test whether timestamps of two
processes (addition and deletion in our case of study) co-occur more than would be expected by
chance (S7). A comprehensive overview of the K-function and the bivariate K-function can be
found in [2].

K1D has three key characteristics[1]: a) Determination of the bivariate K-function and its
transform (L) utilising an edge correction. The K function can be determined in one of three
methods. b) Calculating confidence envelopes using one of three methods: 1) randomization of
events (perhaps weighted by an intensity function), 2) a ’circular’ (’toroidal’ in two dimensions)
shift of records relative to one another, (we choose this method for our simulation) or 3) a shuffling of
events (i.e., randomization without replacement). c) The calculation of smoothed event frequencies
using a predetermined window width.

S1 One-dimensional bivariate multivariate K-function

In other words, for each event in record A, the bivariate K-function returns the fraction of events in
record B that occurred within t time units (the ”temporal window”) of that event. The bivariate
K-function is written as following [1]:

K̃AB(t) =
T

nAnB

nA∑
i=1

nB∑
j=1

w(Ai,Bj)I(|Ai −Bj |< t), (S1)

where T is the length of the record (transect), nA is the number of events in record A, and nB is
the number of events in record B. In one dimension, Ai and Bj are the timestamps of events, I
is the identity function, and w(Ai, Bj) is an edge correction, set to 2 if ∥Ai–Bj∥ is greater than
the distance of Ai to the nearest ”edge” of the record, and otherwise set to 1. K values greater
than 2t indicate attraction or synchronicity between A and B within the time window t. K values
close to 2t indicate that A and B have no relationship or are independent, whereas K values less
than 2t indicate repulsion or asynchrony. The edge correction causes a slight difference between
K̃AB(t) and K̃BA(t) (i.e., whether distances are measured from A to B or vice versa). Then the
transform L-function is defined as: L̃AB(t) = K̃AB(t) − t. We use a package named ’K1D’ which
implements the L-function in R. The program interprets the first column of data as record ’A’
and the second column as record ’B’. Therefore, for ’forward selection,’ the K-function looks for
’B’ events that follow ’A’ events. K-function searches for ’B’ events that precede ’A’ events in
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the ’backward selection’ method. With both the forward and reverse selection methods, only two
records are allowed.

Confidence envelope for the bivariate K-function: Simulations are utilized to create a
confidence envelope. There are three ways of simulating such interval which we select ’circular’ shifts
that works as follow: Each randomization consists of shifting each record a random number of time
unit (seconds in our case) and wrapping events from the end to the beginning of the record. This
test examines only the dependence between two records and maintains the first-order properties
(frequency) of each record during randomization [2]. Percentiles of the distribution of the simulated
K-function are used to determine the confidence envelopes. Where K̃AB(t) is greater than, within,
or less than the confidence envelope, statistically significant synchrony (attraction), independence,
or statistically significant asynchrony (repulsion) in a window of t is indicated.

In our simulation, we chronologically ordered the events regardless of the nodes involved. All
timestamps are converted to seconds because the program handles integer data more efficiently,
and timestamps are all shifted to the origin of the minimum time in the monitoring time span. We
limited T to a maximum of three hours to improve the resolution of events. We considered the
following cases in our simulation: a) Sequences of addition and deletion types of events occurring in
one day, b,c) Sequences of addition and deletion types of successive events occurring in a two-day
interval, d) Sequence of successive addition type of events occurring within a day, e) Sequence of
addition types of events occurring within two consecutive days, f) Sequences of deletion types of
events occurring within two consecutive days. Figures S8-S13 demonstrates the L-function (trans-
form of the K-function) for the events in the upper figure with 95% confidence envelopes (red lines)
for all 6 cases. In Figure. S8 The L-function lies within the confidence envelopes, indicating the
independence of the underlying addition and deletion events that occur within a 3-hour period. It
should be noted that this may not generalize to all the events happening in a 24-hour period. Since
the addition of nodes or links may compensate for the removal of nodes in some cases. In Figures
S9 and S10 the L-function mostly exceeds the lower confidence envelope indicating strong repulsion
between the events. Indeed the behaviour change at around t ≈ 30000 in Figure. S10 and turns
into no synchrony/Independence in a smaller window. The L-function, as shown in Figure. S11,
exhibits dispersion between occurrences of the same type (addition) occurring within a day. The
area between the lower confidence envelope and L-function is even larger in the case of addition and
deletion events occurring in two successive days as illustrated in Figures. S12 and S14, respectively.
The behaviour does not exhibit a consistent trend in Figure. S13; we see no synchrony at the begin-
ning, followed by a small interval of attraction, then no synchrony again until t ≈ 33000 after which
the repulsion occurs. Given all the observations, we conclude that the events of same/the other
type mainly exhibit independence from or repulsion toward each other depending on the arrival
rates of the events which the events in the latter case may inhibit the occurrence of each other.
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Figure S8: A. Sequences of addition and deletion types of events occurring in one day
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Figure S9: B. Sequences of addition and deletion types of successive events occurring in a two-day
interval
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Figure S10: C. Sequences of addition and deletion types of successive events occurring in a two-day
interval
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Figure S11: D. Sequence of successive addition type of events occurring within a day
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Figure S12: E. Sequence of addition types of events occurring within two consecutive days
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Figure S13: F. Sequences of deletion types of events occurring within two consecutive days

16



Figure S14: G. Sequences of deletion types of events occurring within a day
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