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S1- SAXS and SANS profiles 

(a) 

(b) 

Figure S1-(a) SANS curves and (b) SAXS curves from selected samples 
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S2- TEM images 

 

20
kx1 µm 

Grain boundary 

Figure S2- HAADF-STEM images of sample No. 10 in dark field mode, showing the distribution of Zr-containing dispersoids from a grain boundary towards the 
middle of the grain

Grain boundary 

1 µm 

Figure S3- HAADF-STEM images of sample No. 1 in dark field mode, showing the distribution of Zr-containing dispersoids from a grain boundary towards the 
middle of the grain.
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Grain boundary 

2 µm 

Figure S4-- HAADF-STEM images of sample No. 13 in dark field mode, showing the distribution of Zr-containing dispersoids from a grain boundary 
towards the middle of the grain
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S3 Mathematical Background of SAS Data Evaluation 
The small angle scattering data from the samples shown in Figure S1 are described by the sum of four 
contributions 

𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓(𝑞𝑞) = 𝐼𝐼𝑆𝑆(𝑞𝑞) + 𝐼𝐼𝐷𝐷(𝑞𝑞) + 𝐼𝐼𝐺𝐺𝐺𝐺(𝑞𝑞) + 𝑘𝑘𝐵𝐵 (S1) 

where 𝐼𝐼𝑆𝑆(𝑞𝑞) is the contribution from the S-phase or other large primary precipitates, 𝐼𝐼𝐷𝐷(𝑞𝑞) the contribution 
from the dispersoids, 𝐼𝐼𝐺𝐺𝐺𝐺(𝑞𝑞) the one due to the GP zones, and 𝑘𝑘𝐵𝐵 a constant background. 

The S-phase precipitates are large (>100 nm), which leads to 𝐼𝐼(𝑞𝑞) = 𝑘𝑘𝑆𝑆 ⋅ 𝑞𝑞−4 within the measured q-range 
[1], with the unknown proportionality constant 𝑘𝑘𝑆𝑆.  

The contribution by the GP zones is modelled according to Fratzl et al. [2-3] as 

𝐼𝐼𝐺𝐺𝐺𝐺(𝑞𝑞) = 𝑘𝑘𝐺𝐺𝐺𝐺 ⋅
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Since several of these parameters depend on each other, 𝐼𝐼𝐺𝐺𝐺𝐺(𝑞𝑞) can be uniquely expressed by the pre-factor 
𝑘𝑘𝐺𝐺𝐺𝐺, the volume fraction of GP-zones 𝜑𝜑𝐺𝐺𝐺𝐺, and the position of the maximum 𝑞𝑞𝐺𝐺𝐺𝐺, where the parameter 𝑑𝑑 
was set to 𝑑𝑑 = 0.06 [4].  

Finally, 𝐼𝐼𝐷𝐷(𝑞𝑞) is modeled using a homogeneous distribution of non-interacting spherical precipitates with a 
free-form radius-distribution 𝐷𝐷(𝑟𝑟). The size distribution 𝐷𝐷(𝑟𝑟) of the dispersoids can be represented as the 
sum of 𝑛𝑛 basis functions 𝜒𝜒𝑖𝑖(𝑟𝑟) using the prefactors 𝑓𝑓𝑖𝑖 

𝐷𝐷(𝑟𝑟) = �𝑓𝑓𝑖𝑖 ⋅ 𝜒𝜒𝑖𝑖(𝑟𝑟)
𝑛𝑛
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 (S4) 

We used cubic B-slines as basis functions. If these basis functions are transformed in reciprocal space by 
using the form factor of spheres 

𝜓𝜓𝑖𝑖(𝑞𝑞) = � 𝜒𝜒𝑖𝑖(𝑟𝑟) ⋅ 𝑟𝑟𝑤𝑤 ⋅ �3
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one can represent 𝐼𝐼𝐷𝐷(𝑞𝑞) as 

 𝐼𝐼𝐷𝐷(𝑞𝑞) = �𝑓𝑓𝑖𝑖 ⋅ 𝜓𝜓𝑖𝑖(𝑞𝑞)
𝑛𝑛
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 (S6) 

where the exponent 𝑤𝑤 can be used to obtain the distribution weighted by number (𝑤𝑤 = 6), volume (𝑤𝑤 = 3) 
or intensity (𝑤𝑤 = 0) [5]. 

The coefficients 𝑘𝑘𝑆𝑆, 𝑘𝑘𝐺𝐺𝐺𝐺, 𝑘𝑘𝐵𝐵, 𝑓𝑓1 …𝑓𝑓𝑛𝑛 from Eq. S1 are obtained by solving the equation system similar to the 
Indirect Fourier transformation technique  

 (𝐁𝐁 + 𝜆𝜆𝐒𝐒)𝐟𝐟 = 𝐝𝐝 (S7) 

where the 𝐜𝐜 is a vector containing the solution coefficients 
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and where 
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using the measured intensities 𝐼𝐼(𝑞𝑞𝑗𝑗) with their limit of uncertainty 𝜎𝜎𝑗𝑗 at the 𝑚𝑚 points at 𝑞𝑞𝑗𝑗. The parameter 
𝜆𝜆 is a Lagrange multiplier, which determines the stabilization of the size distribution. This stabilization is 
done by matrix 𝐒𝐒, which links the values of the prefactor of the basis function 𝑓𝑓𝑖𝑖 to the prefactors of the 
neighbouring basis functions 𝑓𝑓𝑖𝑖−1 and 𝑓𝑓𝑖𝑖+1, but does not impose such a constraint of the coefficients 𝑘𝑘𝑆𝑆, 𝑘𝑘𝐺𝐺, 
and 𝑘𝑘𝐵𝐵. 
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A whole range of different Lagrange multipliers is used with 𝜆𝜆 values changing over several orders of 
magnitude. For each 𝜆𝜆 equation (S7) is solved repeatedly with varying parameters 𝑞𝑞𝐺𝐺𝐺𝐺 and 𝜑𝜑𝐺𝐺𝐺𝐺 until the 
lowest mean deviation 𝑀𝑀 has been reached with 

 𝑀𝑀 = �1
𝑚𝑚
�

�𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓�𝑞𝑞𝑗𝑗� − 𝐼𝐼�𝑞𝑞𝑗𝑗��
2

𝜎𝜎𝑗𝑗2
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 (S11) 

Since the approximation of the parameters 𝑞𝑞𝐺𝐺𝐺𝐺 and 𝜑𝜑𝐺𝐺𝐺𝐺 corresponds to a non-linear least squares problem, 
the Boltzmann simplex simulated annealing algorithm to find the best solution [6]. 

The correct Lagrange multiplier is selected by searching a solution that combines a low mean deviation with  
𝑑𝑑𝑁𝑁𝑐𝑐
𝑑𝑑𝑑𝑑

≈ 0, where 

𝑁𝑁𝑐𝑐 = ∑ |𝑐𝑐𝑖𝑖+1 − 𝑐𝑐𝑖𝑖|𝑛𝑛−1
𝑖𝑖=1      (S12) 

 

 

S4 Comparison of SAXS and SANS 
Generally, the SAS intensity of a two-phase system of precipitates 𝑃𝑃 in a matrix 𝑀𝑀 can be written as [7] 

𝐼𝐼(𝑞𝑞) = 𝜑𝜑𝑃𝑃𝜑𝜑𝑀𝑀(𝜌𝜌𝑀𝑀 − 𝜌𝜌𝑃𝑃)2𝐹𝐹(𝑞𝑞) = 𝜑𝜑𝑃𝑃(1 − 𝜑𝜑𝑃𝑃)𝐾𝐾𝐾𝐾(𝑞𝑞)    (S13) 

Where 𝜑𝜑𝑃𝑃 and 𝜑𝜑𝑀𝑀 are the volume fractions, 𝐾𝐾 = (Δ𝜌𝜌)2 = (𝜌𝜌𝑀𝑀 − 𝜌𝜌𝑃𝑃)2 is the scattering contrast between 
matrix and precipitates, Δ𝜌𝜌 being the difference of their scattering length densities, and 𝐹𝐹(𝑞𝑞) is the square 
of the scattering amplitude. We use the following approximations for the scattering of two independent 
types of precipitates, i.e. dispersoids (D) and GP-zones (GP) in an Al-rich matrix:   

a) The two precipitate phases do not interact with each other such that their scattering intensities can be 
added (incoherent approximation). 

b) The two precipitate phases are dilute, which results in 𝜑𝜑𝑀𝑀 = (1 − 𝜑𝜑𝑃𝑃) ≈ 1 with the scattering length 
density of the matrix being approximately the one of pure Al, 𝜌𝜌𝑀𝑀 ≈  𝜌𝜌𝐴𝐴𝐴𝐴, for both. This means that we 
can employ two independent 2-phase approximations for D and GP.  

c) The two precipitate phases have a considerably different size, such that their intensity distributions are 
well separated in reciprocal space. 

Using approximations a) and b) we can write for the scattering intensity of dispersoids and GP-zones 
measured with SANS (upper index n) and SAXS (upper index x), respectively 

𝐼𝐼𝑛𝑛(𝑞𝑞) = 𝐶𝐶𝑛𝑛�𝜑𝜑𝐷𝐷𝐾𝐾𝐷𝐷𝑛𝑛𝐹𝐹𝐷𝐷(𝑞𝑞) + 𝜑𝜑𝐺𝐺𝐺𝐺𝐾𝐾𝐺𝐺𝐺𝐺𝑛𝑛 𝐹𝐹𝐺𝐺𝐺𝐺(𝑞𝑞)�     (S14) 

𝐼𝐼𝑥𝑥(𝑞𝑞) = 𝐶𝐶𝑥𝑥�𝜑𝜑𝐷𝐷𝐾𝐾𝐷𝐷𝑥𝑥𝐹𝐹𝐷𝐷(𝑞𝑞) + 𝜑𝜑𝐺𝐺𝐺𝐺𝐾𝐾𝐺𝐺𝐺𝐺𝑥𝑥 𝐹𝐹𝐺𝐺𝐺𝐺(𝑞𝑞)�    (S15) 

With 𝐶𝐶𝑛𝑛 and 𝐶𝐶𝑥𝑥 being experimental constants and the lower indices D and GP refer to dispersoids 

and GP-zones, respectively. For the ratio of the intensities we obtain with 𝐶𝐶 = 𝐶𝐶𝑛𝑛

𝐶𝐶𝑥𝑥
𝐾𝐾𝐷𝐷
𝑛𝑛

𝐾𝐾𝐷𝐷
𝑥𝑥 
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𝐼𝐼𝑛𝑛(𝑞𝑞)
𝐼𝐼𝑥𝑥(𝑞𝑞) = 𝐶𝐶

�𝐹𝐹𝐷𝐷(𝑞𝑞)+𝜑𝜑𝐺𝐺𝐺𝐺𝜑𝜑𝐷𝐷
∙
𝐾𝐾𝐺𝐺𝐺𝐺
𝑛𝑛

𝐾𝐾𝐷𝐷
𝑛𝑛 ∙𝐹𝐹𝐺𝐺𝐺𝐺(𝑞𝑞)�

�𝐹𝐹𝐷𝐷(𝑞𝑞)+𝜑𝜑𝐺𝐺𝐺𝐺𝜑𝜑𝐷𝐷
∙
𝐾𝐾𝐺𝐺𝐺𝐺
𝑥𝑥

𝐾𝐾𝐷𝐷
𝑥𝑥 ∙𝐹𝐹𝐺𝐺𝐺𝐺(𝑞𝑞)�

   (S16) 

This expression generally depends on both, the contrast ratios and the ratio of the volume fractions of the 
two precipitate types. However, when considering that the dispersoids are much larger than the GP-zones 
(approximation c)), their scattering can be neglected in the large q-region where the scattering from GP-
zones dominates. Therefore  

  𝐼𝐼𝑛𝑛(𝑞𝑞)
𝐼𝐼𝑥𝑥(𝑞𝑞) ≈ 𝐶𝐶 𝐾𝐾𝐺𝐺𝐺𝐺

𝑛𝑛

𝐾𝐾𝐷𝐷
𝑛𝑛

𝐾𝐾𝐷𝐷
𝑥𝑥

𝐾𝐾𝐺𝐺𝐺𝐺
𝑥𝑥        (S17) 

for large values of q, were the scattering from GP-zones is dominant. Please note that this expression is now 
independent of the volume fractions and depends on the contrast ratios only. Table S1 summarizes the 
estimates of the scattering contrasts for GP-zones and dispersoids, leading to  𝐼𝐼

𝑛𝑛

𝐼𝐼𝑥𝑥
≈ 4.5 in Eq. S17, in good 

agreement with the experimental result shown in Figure 2 in the main manuscript. For comparison, Table 
S1 lists also the contrast scenario for the η-phase. In this case one would expect a factor 1.7 for 𝐼𝐼𝑛𝑛/𝐼𝐼𝑥𝑥 in 
Eq. S17. Therefore, it is concluded that the scattering in the region of the first hump at intermediate q in 
Figure 2 and Fig. 3a,b in the main manuscript stems dominantly from Zr-rich dispersoids, allowing to 
evaluate the SAS curves quantitatively towards the size distribution of dispersoids as described in S3. 

 
 Table S1 - Scattering length densities ρ for X-rays (index x) and neutrons (index n) (from Ref. [8]), and scattering contrast 𝐾𝐾 =
(Δ𝜌𝜌)2 of precipitate phases with respect to pure aluminum. 
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