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Table S1. Particle size distribution of the ceria as a function of the frequency obtained from ELPI
measurements [63].

Particle diameter Frequency of particles (%)
95 nm-264 nm 114
264 nm-384 nm 17
384 nm—616 nm 35
616 nm—-953 nm 23
953 nm-1.61 um 9
1.61 ym-2.4 um 3
2.4 um—4.01 um 1
4.01 um-6.71 um 0.23
6.71 um-9.96 um 0.37

Table S2. Cyclones' characteristics in Aspen Plus [65].

Calculation method Leith-Licht
Type Stairmand-HE
Separation efficiency 0.9
Maximum pressure drop 0.015 bar
Maximum number of cyclones 100
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Figure S1. SOFC scheme in Aspen Plus when the CL is in OFF-state.

Table S3. Thermal balance of the chemical looping.

COMPONENT HEAT DUTY [MWi{]

Reduction reactor

Reduction reaction -114.0
Methane stream -20.12
Total ceria stream -7.39
Oxidation reactor 32.97
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Figure S2. Thermal balance of HEA-CDS1 and HEA-CDS2 in Aspen Plus.
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Figure S3. Thermal balance of HEAT-CO2 in Aspen Plus.
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Figure S4. Thermal balance of HEAT-H2O in Aspen Plus.
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Figure S5. Thermal balance of HEAT-RE in Aspen Plus.
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Figure S6. Thermal balance of HEAT-ST in Aspen Plus.

Table S4. Thermal balance of the reforming unit.

COMPONENT HEAT DUTY [MW4]
Reforming reactor Reforming reaction -126.74
Methane stream -11.53
CO: stream -14.15
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Figure S7. Thermal balance HEAT-D2 in Aspen Plus.
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Figure S8. Thermal balance of HEAT-D3 in Aspen Plus.
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Figure S9. Mixer of the steam and hot water streams of the plant and simulation of the cooling of
the output stream (STE-TOT) to obtain useful thermal power (THE-REQ) when CL is in ON-state.
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Figure S10. Simulation of the thermal recovery from steam when CL is in OFF-state.
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Table S5. Comparison of results of the reduction reactor model of this paper with the results re-
ported by Bose et al. [36] at the chosen operating conditions of the solar aided CL.

Reduction reaction, p =1 bar Bose et al. [36] Present study
Operatine conditions Temperature 900-950 °C 900 °C
1 1T
perating CH/CeO 0.7-0.8 0.8
Ho 63% 55%
Produced syngas o 1% 1%

Table S6. Comparison of the results of the reduction reactor model of this study with the results
reported by Warren et al. [54] and by Bose et al. [36] at different operating conditions.

Reduction reaction, CHs/CeO2=0.25 p =1 bar

Temperature (°C) Mole fraction of exit gas
H> CO CH4 H:20 CO:
900 °C
Warren et al. [54] 0.718 0.273 0.004 0.004 0
Bose et al. [36] 0.655 0.329 0.006 0.009 0.001
Present study 0.585 0.400 0.007 0.009 0.004
1000 °C
Warren et al. [54] 0.699 0.301 0 0 0
Bose et al. [36] 0.639 0.325 0 0.028 0.008
Present study 0.572 0.400 0 0.028 0.010

Table S7. Comparison of the results of the model of this study with the results reported by Bose et
al. [36] for the oxidation of ceria with H20 and CO2.

kmol

Oxidation reaction, 7ceo2=0.5 — /P= 1 bar
. o Waste gas flow Mole fraction of exit gas —
emperature kmol ther gases +
— H
( h ) ’ co CeO:2 residuals
05 Bose et al. [36] 0.440  0.450 0.110
’ Present study 0406 0411 0.183
Bose et al. [36] 0.280  0.320 0.400
900 °C 0.75
Present study 0.280  0.303 0.417
1 Bose et al. [36] 0.210  0.240 0.550
Present study 0.212  0.238 0.550
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