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Supplementary Note 1: Finite element method (FEM) simulation 

 

Considerering heat conduction and Gaussian power distribution in transient form, ‘Heat Transfer Module: Depos-

ited Beam Power’ setting was applied, expressed as 
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where k, T and egen implies conduction coefficient, temperature, and rate of energy generation given by laser power. For 

implementing gaussian beam scanning, ‘gaussian pulse’ and ‘gaussian beam’ settings were applied with standard de-

viation (σ = 4) which represents the beam intensity profile. Gaussian function is expressed as 
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where 𝒙𝟎, 𝒙, 𝒀 are the center of beam spot, the distance from the 𝒙𝟎 and the beam intensity, respectively, while the 

normalization factor n is 1 for peak value normalization. 

For the boundary conditions, room temperature (293.15 K) and natural convection coefficient (h = 5 m2 K) is applied 

on the four sides. The thermal properties of PDMS (ρ = 965 kg m-3, cp = 1460 J kg-1 K-1, k = 0.16 W m-1 K-1), SiC (ρ = 2700 

kg m-3, cp = 900 J kg-1 K-1, k = 30 W m-1 K-1) and glass (ρ = 2500 kg m-3, cp = 870 J kg-1 K-1, k = 1.06 W m-1 K-1) were applied,1-

3 where ρ and k imply the density and the thermal conduction coefficient while cp is the specific heat capacity. 

For the results of this transient simulation, the highest temperature of glass surface was obtained at 6.7 ms for the 

case (c1) and 6 ms for the case (c2) of figure 3c.   

 

Supplementary Note 2: Finite-difference time-domain (FDTD) simulation 

For qualitative analysis of power absorption according to incidence angle, FDTD method using Lumerical software 

was employed. For simulating complex geometry problem, FDTD solves Maxwell’s curl equation in non-magnetic ma-

terials, expressed as 
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where D, H and E implies the displacement, magnetic and electric fields, respectively, while ετ given by the complex 

relative dielectric constant which is expressed as square of refractive index. 4-6 In this simulation, the solution was ob-

tained by the built-in source setting of ‘global properties’, wavelength starts at 0.4 um and stops at 0.7 um shown as (a) 

of figure S2, and geometry setting of ‘Polygon’, we implemented the SiC geometry that each surface profile points were 

extruded from cross-section microscopy images shown as (b) and (c) of figure S1. For the input values of refractive 

index and extinction coefficient, the properties of carbon thin film were applied, since pyrolyzed byproduct of this 

process is mostly carbon. 7,8 

 

Figure S1. Built-in settings of FDTD simulation, (a) Wavelength, frequency settings of FDTD simulation, (b) cross-section image 

of microchannel created by back-surface scanning, (c) SiC geometry applied to FDTD simulation. 
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