
 

Supplementary Materials 

Governing Equations 

The following section supplements 2.4 Numerical methods. A ductile damage material model was imple-

mented for the pin, honeycomb cells, and foam. For every material, the equivalent plastic strain at the 

damage initiation was defined (Appendix A). Once the damage initiation criterion was reached, the effec-

tive plastic displacement 𝑢̅𝑝𝑙 needed to be specified, and its evolution is defined by 

𝑢̅̇̅𝑝𝑙 = 𝐿𝜀̇𝑝𝑙 , (S1) 

where L is the characteristic length of the element. The evolution of the damage variable with the relative 

plastic displacement is specified in a linear form:  

𝑑̇ = 𝑢̅̇̅𝑝𝑙 𝑢̅𝑝𝑙 ,⁄  (S2) 

where 𝑑 is the damage variable, which provides the degradation of the stiffness according to  

𝜎 = (1 − 𝑑)𝜎̅ (S3) 

where 𝜎̅ is the effective stress tensor. The material loses its load-carrying capacity when 𝑑 = 1.  

The Hashin damage model predicted anisotropic damage in fibre-reinforced composite face sheets and 

considered four different failure modes: fibre tension, fibre compression, matrix tension, and matrix com-

pression. 

Fibre tension (𝜎̂11 ≥ 0):  
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, (S4) 

Fibre compression (𝜎̂11 < 0):  
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Matrix tension (𝜎̂22 ≥ 0):  

(
𝜎̂22
𝑌𝑇
)
2

+ (
𝜏̂12
𝑆𝐿
)
2

= {
≥ 1 ∶ failure
< 1 ∶ no failure

, (S6) 

Matrix compression (𝜎̂22 < 0):  
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where 𝑋𝑇 is the tensile strength in the fibre direction, 𝑋𝐶 is the compressive strength in the fibre direc-

tion, 𝑌𝑇 is the tensile strength in the transverse direction, 𝑌𝐶 is the compressive strength in the transverse 

direction, 𝑆𝐿 is the longitudinal shear strength, and 𝑆𝑇 is the transverse shear strength. The values of these 

model parameters were defined from the experiments described in the first chapter and presented in Ap-

pendix A. 𝜎̂ is the effective stress tensor, which is calculated as follows:  

𝜎̂ = 𝑀𝜎, (S8) 

where M is damage operator defined as 

𝑀 = [
 1 (1 − 𝑑𝑓)⁄
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0

   
 0
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0

   
 0
0

1 (1 − 𝑑𝑠)⁄
], (S9) 

where 𝑑𝑓, 𝑑𝑚, and 𝑑𝑠 are internal damage variables that characterise fibre, matrix, and shear damage, re-

spectively.  

𝑑𝑓 = {
𝑑𝑓
𝑡 , 𝜎̂11 ≥ 0 

𝑑𝑓
𝑐 , 𝜎̂11 < 0

, (S10) 

𝑑𝑚 = {
𝑑𝑚
𝑡 , 𝜎̂22 ≥ 0 
𝑑𝑚
𝑐 , 𝜎̂22 < 0

, (S11) 

𝑑𝑠 = 1 − (1 − 𝑑𝑓
𝑡)(1 − 𝑑𝑓

𝑐)(1 − 𝑑𝑚
𝑡 )(1 − 𝑑𝑚

𝑐 ). 
(S12) 

Here, 𝑑𝑓
𝑡 , 𝑑𝑓

𝑐 , 𝑑𝑚
𝑡 , and 𝑑𝑚

𝑐  are the damage variables. When the damage criteria were met at an integration 

point, all the stress components were set to zero so that the material points were deleted. When all the ma-

terial points at any one section of an element failed, the element was removed.  

 

In Abaqus a nonlinear coupled system is solved using Newton's method [22]. An exact implementation of 

Newton's method involves a non-symmetric Jacobian matrix as follows 
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{
𝐾𝑢𝑢 𝐾𝑢𝜃
𝐾𝜃𝑢 𝐾𝑢𝑢

} {
∆𝑢
∆𝜃
} = {

𝑅𝑢
𝑅𝜃
}, (S13) 

where ∆𝑢  and ∆𝑢  are the respective corrections to the incremental displacement and temperature, 𝐾𝑢𝑢, 

𝐾𝑢𝜃, 𝐾𝜃𝑢 and 𝐾𝑢𝑢 are submatrices of the fully coupled Jacobian matrix, and 𝑅𝑢 and 𝑅𝜃 are the mechanical 

and thermal residual vectors, respectively. 

Heat transfer equations are integrated using the explicit forward-difference time integration rule 

𝜃𝑖+1
𝑁 = 𝜃𝑖

𝑁 + ∆𝑡𝑖+1𝜃̇𝑖
𝑁, (S14) 

where 𝜃𝑁 is the temperature at node N and subscript i refers to the increment number. The current tem-

peratures are obtained using known values of 𝜃̇𝑖
𝑁, which are calculated in the beginning of time increment 

𝜃̇𝑖
𝑁 = (𝐶𝑁𝐽)−1(𝑄𝑖

𝐽 − 𝐹𝑖
𝐽), (S15) 

in which 𝐶𝑁𝐽 is the lumped capacitance matrix, 𝑄𝑖
𝐽
 is the applied nodal source vector, and 𝐹𝑖

𝐽
 is the inter-

nal flux vector. The mechanical solution response is obtained using the explicit central-difference integra-

tion rule with a lumped mass matrix 

𝑢̇𝑖+0.5
𝑁 = 𝑢̇𝑖−0.5

𝑁 + 0.5(∆𝑡𝑖+1 + ∆𝑡𝑖)𝑢̈𝑖
𝑁, (S16) 

𝑢𝑖+1
𝑁 = 𝑢𝑖

𝑁 + ∆𝑡𝑖+1𝑢̇𝑖+0.5
𝑁 . 

(S17) 

Here 𝑢𝑁 is degree of freedom. Acceleration at the beginning of the increment are computed as 

𝑢̈𝑖
𝑁 = (𝑀𝑁𝐽)−1(𝑃𝑖

𝐽 − 𝐼𝑖
𝐽), (S18) 

where 𝑀𝑁𝐽 is the mass matrix, 𝑃𝐽 is the applied load vector, and 𝐼𝐽 is the internal force vector. Since both 

the forward-difference and central-difference integrations are explicit, the heat transfer and mechanical 

solutions are obtained simultaneously by an explicit coupling. The stability limit for both central-differ-

ence and forward-difference operators is obtained by choosing 
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∆𝑡 ≤ 𝑚𝑖𝑛(2 𝜔𝑚𝑎𝑥⁄ , 2 𝜆𝑚𝑎𝑥⁄ ), (S19) 

in which 𝜔𝑚𝑎𝑥is the highest frequency in the system of equations of the mechanical solution response and 

𝜆𝑚𝑎𝑥 is the largest eigenvalue in the system of equations of the thermal solution response. An approxima-

tion to the stability limit for the forward-difference operator in the thermal solution response is given by 

∆𝑡 ≈ 𝐿𝑚𝑖𝑛
2 2𝛼⁄ , (S20) 

where 𝐿𝑚𝑖𝑛 is the smallest element dimension in the mesh and 𝛼 is the thermal diffusivity of the material, 

which depends on the material's thermal conductivity, density, and specific heat. Stability limit of the 

time increment for the equations of body motion is 

∆𝑡 ≈ 𝐿𝑚𝑖𝑛 𝑐𝑑⁄ , (S21) 

in which 𝑐𝑑 is the dilatational wave speed. 

The total stress is defined from the total elastic strain as 

𝜎 = 𝐷𝑒𝑙(𝜀𝑒𝑙 + 𝜀𝑝𝑙), (S22) 

where 𝐷𝑒𝑙 is the fourth-order elasticity tensor, and 𝜀𝑒𝑙 is the total elastic strain. Elastic properties of pin, 

honeycomb cells and foam are considered as isotropic. The stress-strain relationship is given by 
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. (S23) 

 

The elastic properties are defined by the Young's modulus E, and the Poisson's ratio v. The shear modu-

lus, G, is defined as  𝐺 = 𝐸/2(𝑣 + 1). These parameters defined as constants, except the Young`s modu-

lus of pin, which is given as functions of temperature as presented in Appendix A. For the shell elements 

of composite face sheets an orthotropic material is defined with the following stress-strain relations 
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{
𝜀1
𝜀2
𝛾12
} = [

 1 𝐸1⁄

−𝑣12 𝐸1⁄
0

   
 −𝑣12 𝐸1⁄

1 𝐸2⁄
0

   
 0
0

1 𝐺12⁄
] {

𝜎11
𝜎22
𝜏12
}. (S24) 

General contact was defined in Abaqus/Explicit for the simulation of contact and interaction problem. All 

surfaces are defined automatically. This default surface contains all exterior element faces, all analytical 

rigid surfaces and all edges in the model, as well as the nodes attached to these faces and edges. The gen-

eral contact algorithm activates and deactivates contact faces and contact edges in the contact domain 

based on the failure status of the underlying elements.  


