05 4 — L=10
— L =100
—— L =1000

Q
3 04 o
]
o
E
Q
c
S
o 0.3 -
£
5
S
<
®
w
T 0.2 -
‘s
z
3
®
Qo
© 01 + J
a

0.0

T T T T T T T T T
—0.100-0.075-0.050-0.025 0.000 0.025 0.050 0.075 0.100

dfm — df (debt in food)}

Figure S1: Probability of protocell death depending on food debt

import numpy as np

import matplotlib.pyplot as plt

#Number of timesteps:

T=150
Initial P
Pi =100
Pa=75
Pt=15
S=5

function describing the evolution of P during the T timesteps:

X = np.arange(0,T)

y = Pa*np.sin(2*np.pi*x/Pt)+Pi

#Initial food amount in compartment

F=1

rate of food input in compartment

Fi=0.2

Concentration of molecules A1, ..., A4 in compartment

Axc =100

initial number of protocells:

NO = 100

Type of protocells and initial conditions (alive/dead)
Typel = np.hstack([np.ones(int(np.floor(N0/2))),np.zeros(int(np.floor(N0/2)))1)

Type2 = np.hstack([np.zeros(int(np.floor(N0/2))),np.ones(int(np.floor(N0/2)))])

#factor for death probability

L=1000

initial protocell volumes

V = 1*np.ones(N0);

volume threshold for division

VT =2

factor for volume growth of protocells

Gr =0.005

initial concentration of molecules A1, ..., A4 *in protocells*. To simplify, all these molecules have
the same initial oncentrations A here.

A =100*np.ones(NO)

factor of diffusion for food

DF =0.01

factor for food/energy conversion

Fu = 1*10%*(-5)

factor for maintenance energy

Fm =0.001

Factor of diffusion for molecules A1, ..., A4.

D=0.1

initial rate of active uptake of molecule A, ..., A4.

U = 10*np.ones(NO)

matrix containing all the info on all protocells. Each protocell corresponds to a line.

columns in the matrix: protocell volume | 4 columns with A concentrations | 4 columns with
rates of active A intake | State and type of the protocell (alive/dead) |

protocells = np.array([V,A,AA, A, U, U, U, U, Typel, Type2]).T

for tin range(T):

at each timestep, food input in the compartment

F=F+Fi

Fc_tot=0
value of P on timestep t
P=y[t]

Initializing the matrix that will contain the daughter protocells. It has the same structure than the
matrix 'Cells'.

daughter = np.empty((0,11))

#for each active protocell:
for i in range(Cells.shape[0]):
if the protocell is active:
if protocells[i,9] + protocells[i,10] > O:
protocellular division and stochastic variations ("mutations") if volume superior to VT:
if protocells[i,0] > VT:
defining the value of stochastic variation; it depends on the protocell type.
if protocells[i,-2] > 0:
stochC = stochC1;
if protocells[i,-1] > 0:
stochC=S§;
defining the mutations of the values of active uptake U1, ..., U4 for daughter protocells
mutations1 = list();
for jin range(5,9):
X = np.random.normal(loc = 0, scale = stochC)
if X < -Cells][i,j]:
X = -Cells[i,j]
mutationsl.append(X)
mutations2 = list();
for j in range(5,9):
X = np.random.normal(loc = 0, scale = stochC)
if X < -Cells[i,j]:

X = -Cells[i,j]

mother protocell, same A concentrations, rates of active A uptakes with stochastic variation, same

type.

protocells[i,5]+mutations1[0],Cells[i,6]+mutations1[1],Cells[i,7]+mutations1[2],Cells[i,8]+mutations1|

mutations2.append(X)

defining the characteristics of the two daughter protocells. V = half the one of the

daughter = np.vstack([daughter,np.matrix([[Cells[i,0]/2,

protocells[i,1],Cells[i,2],Cells[i,3],Cells[i,4],

3],Cells[i,-2],Cells[i,-11],

protocells[i,5]+mutations2[0],Cells[i,6]+mutations2[1],Cells[i,7]+mutations2[2],Cells[i,8]+mutations2|[

[Cells[i,0]/2,

protocells[i,1],Cells[i,2],Cells[i,3],Cells[i,4],

3],Cells[i,-2],Cells[i,-1111)]);

values)

mother protocell disappears
protocells[i,-2] =0

protocells[i,-1] =0

otherwise, if no division:

else:

V_i = protocells[i,0]
entry of food in the protocell through diffusion:
Fc = DF*F*V_i**(2/3)
#adding this amount to the total amount of food consumed by all protocells
Fc_tot=Fc_tot + Fc
#change of Al, ..., A4 concentrations in the protocell.
forjin range(1,5):

Ai = protocells[i,j]

protocells[i,j] = Ai + (D*(Axc-Ai)+Cells[i,j+4])/V_i**(1/3)
Energy required for maintenance
F_maint = Fm*V_i

Energy required for active uptake of molecules A1, ..., A4 (proportional to sum of U

F_U = np.sum(Cells[i,5:9])*Fu

if there is not enough energy for maintenance and active intake, the protocell has a
probability to die.

if np.random.rand() < 0.5*(1-1/(1+np.exp(-L*(Fc-F_maint-F_U)))):
protocells[i,-1] = 0;
protocells[i,-2] = 0;
else:
food that remains for growth:
if F_maint+ F_U < Fc:
F_growth=Fc-F_maint-F_U
Influence of P on catalyst molecule
if P <50:
Mol = protocells[i,1]
if P>=50 and P<100:
Mol = protocells]i,2]
if P>=100 and P<150:
Mol = protocells[i,3];
if P >=150:
Mol = protocells[i,4];
Protocell growth
protocells[i,0] = V_i + Gr*(Mol**2)*F_growth
#the molecules A are then diluted due to growth:
forjin range(1,5):

protocells[i,j] = protocells[i,j]*V_i/Cells]i,0]

adding daughter protocells

protocells = np.vstack([Cells,daughter])

computing the amount of food remaining in the compartment at the end of the timestep

if Fc_tot > F:

