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S1. Supplemental Methods

S1.1. Partial Transition Function

In USDOSv2.0 [1], premises are classified as either susceptible, exposed, infectious or
immune. When within-herd dynamics are not considered (as in USDOS2.0, Tsao et al. [1]),
the rate at which an infectious premises i infects a susceptible premises j is given by,

rate(i,j) = ([Npbeef
(beef,j)]Sbeef+[Npdairy

(dairy,j)]Sdairy)⇥([N qbeef
(beef,i)]Tbeef+[N qdairy

(dairy,i)]Tdairy)⇥K(dij) (S1)

where N(b,i) is the number of individuals of species b on premises i, Sb and Tb are the
susceptibility and transmissibility measures for premises of type b and pb, qb are power
law parameters accounting for a non-linear increase in susceptibility and transmissibility
as animal numbers on a premises increase. Infection spreads between premises via the
transmission kernel K according to the distance between premises i and j, d(i,j).

For USDOSv2.1, we extend the USDOSv2.0 framework outlined above to incorporate
within-herd dynamics such that infectiousness is dependent upon how many animals on the
premises are infectious at time t. Therefore, instead of using a fixed premises size N(beef,i) as
in USDOSv2.0, we use the number of infectious animals at time t I(t)(beef,i). In this revised
model, the rate is now given by,

rate(i,j) =([Npbeef
(beef,j)]Sbeef + [Npdairy

(dairy,j)]Sdairy)⇥ ([I(t)qbeef(beef,i)]Tbeef

+ [I(t)qdairy(dairy,i)]Tdairy)⇥K(dij) (S2)
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where I(t) is calculated by,

I(t) = (t < t(S=0))
�
I(0) +

(r + �r(t(S=0) � t))

(t(S=0)�
2)

�
(r + �rt(S=0))

(t(S=0)�
2)

exp(��t)
�

+ (t � t(S=0))
�
I(0) +

(r exp(��t(S=0))� r � �rt(S=0))

(t(S=0)�
2)

exp(��t)
�

(S3)

and,
r = N(r0I(t� 1) + r1t

2) (S4)

where tS=0 is the time at which all animals are infectious, � is the recovery rate of animals
per day and r is the rate of increase of number of infectious animals given by the function
described in equation S4.

In order to determine the best fit parameters for the partial transition function I(t), we
minimized the sum of the squared di↵erence between “data” (mean of 1000 simulations from
an FMD within-herd model [2]) and the predicted values from the partial transition function
(Table 1).

Figure S1 shows the best fit partial transition function and the mean of the 1000 sim-
ulations for di↵erent farm sizes (plots) and di↵erent numbers of initially exposed animals
(colors). The partial transition function provided a good fit to the simulations from the FMD
within-herd model [2] across di↵erent farm sizes. We did not observe a notable di↵erence in
simulations or model fits when we varied the initial number of exposed animals, therefore,
we do not include this parameter in the partial transition function.

Figure S1: Partial transition function used in USDOSv2.1 curve compared with independent within-herd

model (see FMD manuscript on task 2.1 for details) curves for premises ranging from 5 to 10,000 head in

size. The circles show the within-herd model simulation results and the triangles show the partial transition

function.
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The partial transition function describes how many animals are infectious at time t

after infection has entered the premises and the latency period has passed. The number of
infectious animals is treated as a floating point value rather than an integer, and is referred
to as the e↵ective number of infectious animals, Ie↵:

I
e↵ = f(t, N) =

8
><

>:

r+r�(ts0�t)
ts0�2 � (r+�rts0)

ts0�2 e
��t

, if t < ts0

re�ts0�r�r�ts0
ts0�2 e

��t
, if t � ts0

where
r = N(r0 + (t� 1) + r1t

2) (S5)

and ts0, r0, r1 and � are constants fitted using the FMD within-herd model described in
Beck-Johnson et al. [2].
Rewriting r as

r = N⇢ (S6)

and exchanging it into the equations we get

I
e↵ = f(t, N) =

8
><

>:

N⇢+N⇢�(ts0�t)
ts0�2 � (N⇢+�N⇢ts0)

ts0�2 e
��t

, if t < ts0

N⇢e�ts0�N⇢�N⇢�ts0
ts0�2 e

��t
, if t � ts0

N can be broken out of each term and removed to leave f a function of just t multiplied by
N :

I
e↵ = f(t, N) = Nf(t). (S7)

Therefore, the partial transition function becomes a function of time, t, describing the pro-
portion of the premises’ population that is infectious after t days such that, regardless of
premises size, the proportion will always be the same for each value of t and can be pre-
calculated in USDOSv2.1 (Fig. S2). However, simplifying the partial transition function
to a function of time t and not herd size, means that the scaling factor to get the same
level of transmissibility as in USDOSv2.0 without partial transition is a constant shared by
all premises. Looking at R0 for the infectious premises i, Ri =

P
j 1 � e

��ij . For the case
without partial transition (USDOSv2.0, denoted as noPT in the equations) the transmission
rates are:

�
noPT
ij = SNjK(i, j)TNiP, (S8)

where N is the premises sizes, T and S are susceptibility and transmissibility constants,
respectively, K is the kernel function, which describes the decay in transmission risk over
distance, and P is the infectiousness period (7 days for USDOSv2.0 [1]). Since the e↵ec-
tive number of infectious animals is constant in USDOSv2.0, we can say that the e↵ective-
infectious-animal-days is a simple multiplication (Ni ⇤ P ).

3



Figure S2: FMD partial transition function f(t).

For the case of USDOSv2.1 with partial transition, the e↵ective-infectious-animal-days
is the partial transition function integrated over the period of infectiousness and multiplied
by the number of animals on the premises. For one time-step:

�
PT
ij,t = SNjK(i, j)TIe↵.i,t (S9)

and for the entire period that i is infectious:

�
PT
ij = SNjK(i, j)TNi

1Z

0

f(t)dt (S10)

The area under the curve in Fig. S2 shows the e↵ective-infectious-animal-days over the
infectious period. For the case of partial transition in USDOSv2.1 the infectious period
is longer than in USDOSv2.0 and the area under the curve (Figure S3) is smaller for the
equivalent time frame to the infectious time in USDOSv2.0; this will lead to fewer infections
when partial transition is in use. Therefore, we need to scale the area up so it is equivalent
to the area of the case without partial transition. We incorporate a scaling factor s in
USDOSv2.1 so that:

sNi

1Z

0

f(t)dt = NiP, (S11)

s =
NiP

Ni

1R
0

f(t)dt
, (S12)
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s =
P

1R
0

f(t)dt
, (S13)

Since the integral (given a set of within-herd model parameters) and the infectious period,
P , are constants, the scaling factor is also a constant.

The limits that are used in the integration will have an e↵ect on the scaling factor.
If the limits of integration are 0 and infinity (1), which is the most exact case, it leads
to premises that never stop being infectious in the absence of interventions. Without the
partial transition of states, we implement a set period of infectiousness after which the
premises becomes immune, regardless of intervention or absence thereof. While we could
allow the partial transition function to be evaluated to infinity, it is not biologically realistic
and it would be computationally costly. We therefore, assign a maximum infectious period,
such that premises are infectious at a level determined by the partial transition function until
the maximum infectious period is reached after which they become immune. To ensure that
we capture the biologically relevant aspects of the partial transition function, the maximum
infectious period is selected from the tail of the distribution, 15 or more days (Figure S2).

Figure S3: Area under the FMD partial transition function increases and then plateaus with increasing

infectious period cuto↵.

The selection of an appropriate USDOSv2.1 default value for maximum infectious period
requires an exploration of how changing the cut-o↵ a↵ects the results. We therefore ran
simulations without control for three di↵erent cut-o↵ times. Based on the area under the
curve analysis, we selected cut-o↵ times of 15, 20 and 30 days, respectively. The scaling
factor value for each of the three maximum infectious period values are given in Table S1.
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Table S1: Partial Transition Function Cut-o↵ and Scaling Parameters

Parameter Value Scaling Factor s

Maximum infectious period

15 days 6.49195

20 days 6.30852

30 days 6.27237

The three maximum infectious period scenarios were set up with the same parameters,
settings, and input files as were run for USDOSv2.0 no control simulations (Table S2) [1].
Simulations were seeded in each of the 3049 counties in the contiguous U.S. 10 times for each
of the 10 FLAPS realizations, which leads to each county being seeded 100 times. Each time
a county is seeded a farm is selected at random to be the source of the outbreak.

Table S2: USDOSv2 Transmission Parameters

Parameter
Default
Value

Range Reference

Cattle transmission rate
(ac)

10.252 3.6–100 [1]

Cattle susceptibility (bc) 1 N/A [1]

Normalising constant (k1) 1.46e�08 4.07e�10–3.91e�08 [1]

Scale parameter for spatial
kernel (k2)

1686.16 1686.16–5414.72 [1]

Shape parameter for
spatial kernel (k3)

2.267 2.022–3.006 [1]

Latency period 5 days 3–13 days [1]

S1.2. USAMMv2.0 Model Definition

In USAMMv2.1, we build on the earlier USAMMv2.0 movement model of [4] to improve
the previous statistical model for the the probability of observing a set of interstate cattle
shipments given by the 2009 ICVI data. In this section we describe this previous model, and
in the next section outline the changes that were made to it in the present work. Briefly,
it was assumed in USAMMv2.0 that within each state u 2 U, where U is the set of states
in the contiguous U.S., shipments arose from each single premises as a Poisson process with
the premises-level shipment rate �⇤u. Given this assumption, the collective rate with which
shipments arose from each origin county ! 2 Vu was simply the number of premises in the
county multiplied by �⇤u(!). Here Vu is the set of all counties in u, and, in order to minimize
the use of subscripts, we adopt the notation u(v) to denote the state in which an arbitrary
county v is situated (i.e. in this case u(!) implies the state of the origin county !). The
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shipments that arose from ! were then distributed among all possible destination counties
� 2 V, where V is the set of all counties of all states in U. This last step was achieved by
assigning each � a weight based on an attraction parameter of the destination state, ⌫u(�),
as well as a function of the distance between ! and � and two origin state-level parameters,
u(!) and ⇡u(!). Given these weights, the probability that a shipment originating in ! would
have � as destination could be determined.

With the above definitions, and denoting the complete set of shipments occurred as Y,
the probability of the number of shipments Y!,�,⌧ = |Y!,�,⌧ | in each subset Y!,�,⌧ 2 Y of
shipments moving from origin county ! to destination county � on day ⌧ (1 January being
⌧ = 1) was expressed as

P (Y!,�,⌧ ) = P
�
Y!,⌧ |✓Q(⌧)

�
P
�
�|!,✓Q(⌧)

�
. (S14)

This is the joint probability of Y!,⌧ shipments leaving county !, and that � is the des-
tination county conditional on ! being the origin. USAMMv2.0 included a component of
seasonality with parameters being defined for each quarter of the year, and the full set of
model parameters for a quarter is here denoted by ✓Q(⌧), where Q (⌧) is the quarter into
which the day ⌧ falls.

The number of shipments to originate from a county ! each day was assumed to be
Poisson distributed, with a daily shipment rate �!,Q(⌧),

Y!,⌧ ⇠ Pois
�
�!,Q(⌧)

�
, (S15)

and the first factor of equation (S14) is consequently given by the probability mass
function of the Poisson distribution:

P
�
Y!,⌧ |✓Q(⌧)

�
=
�
Y!,⌧

!,Q(⌧)e
��!,Q(⌧)

Y!,⌧ !
. (S16)

The daily shipment rate of the county ! was given by scaling a state- and quarter-specific
premises-level shipment rate by the total number of premises in the origin county so that

�!,Q(⌧) = w!�
⇤
u(!),Q(⌧). (S17)

Here, �⇤u,Q(⌧) is the state- and quarter-specific rate with which shipments originate from
each single premises within the state of u and was estimated as a parameter in the model.
To obtain the county-level shipment rate, �⇤u,Q(⌧) was simply multiplied by the number of
premises in the county, i.e. denoting the set of all premises in a county v as Pv, w! was
given by

wv =
X

i2Pv

1. (S18)

The second factor of equation (S14) describes how likely one of the Y!,⌧ shipments that
originated from ! was to end up in each of all the possible destination counties. This
process was controlled by two separate mechanisms. First, each state u was associated with
a parameter, ⌫u,Q, controlling the propensity for a single premises in the state to attract
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shipments in quarter Q. When scaled up by the number of premises in a county, this gave
a total measure of the entire county’s capacity to attract shipments based on the size of its
population of premises. Second, each state was associated with a monotonically decreasing
distance kernel function, H, which gave a distance dependence component to the county–to–
county shipment probability. In [4], three di↵erent kernel functions were implemented and
compared, of which the functional form

H(d, s,m) =
1

1 +
�
d
s

�m , (S19)

was preferred in model selection. The two state-specific parameters su,Q and mu,Q deter-
mines the kernel’s scale and shape. This spatial kernel (with the same functional form as
the kernel used for local transmission, eq. 2), is plateau-shaped at short distances and has a
fat tail describing the probability of long distance shipments.

To make the kernel parameters easier to interpret, the distance kernel function was repa-
rameterized to be expressed with parameters u,Q and ⇡u,Q. The scale measure u,Q was
defined as the distance (in kilometers) to where the value of the kernel had dropped to 50%
of its value at distance zero, i.e. the distance where a premises is half as likely to be the des-
tination as an immediate neighboring premises, all other things equal. The scale parameter
⇡u,Q, was defined as the ratio between u,Q and the distance where the kernel value is 0.05%
of its value at zero. The choice of 0.05% was somewhat arbitrary but corresponds to a sub-
stantially lower kernel value compared to the value at distance u,Q. Expressing the kernel
with parameters that o↵er an intuitive sense of the kernel behavior promotes prior elicitation
and interpretation of results. Omitting state and quarter indices for brevity, parameters s

and m in equation (S19) are calculated from  and ⇡ as

s =


exp


ln
⇣

1�x1
x1

⌘

m

� (S20)

and

m =
ln
⇣

1�x1
x1

⌘
� ln

⇣
1�x2
x2

⌘

ln ⇡
(S21)

To consider strictly monotonically decreasing kernels and positive shipment distances
only, the parameters were restricted to u,Q 2 (0,1) and ⇡u,Q 2 (1,1). Defining ⇡u,Q > 1
ensured that no kernels had a reverse distance dependence, i.e. distance dependence where
the probability of shipment increases with distance, which was deemed unlikely for the sys-
tem.

Given an origin county ! and the above two mechanisms, a weight was given to each
destination county �, describing how likely it was to receive a shipment from ! in relation
to all other counties,

W!,�,Q(⌧) = w�⌫u(�),Q(⌧)H
�
u(!),Q(⌧), ⇡u(!),Q(⌧), d!,�

�
. (S22)
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Here, w� was defined as the number of premises in �, (equation S18), and the product
given by w�⌫u(�),Q(⌧) was the total county-level attraction contributed by all the premises
in �. The inter-county distance, d!,�, was given by the Euclidean distance in kilometers
between the two counties’ centroids, and scaled the weight via the distance kernel function
of the state in which the origin county is located. By normalizing W!,�,Q(⌧) over all possible
destination counties, an expression for the probability that any shipment originating in !

goes to � (i.e. the second half of equation S14) was obtained,

P
�
�|!,✓Q(⌧)

�
=

W!,�,Q(⌧)X

i2V

W!,i,Q(⌧)

. (S23)

S1.3. USAMMv2.1

In the above model definition of USAMMv2.0, each premises is given equal weight through
the equation (S18), and the variables w! and w� are simply the number of premises in the
respective county. Analyses of other systems have however revealed that both the number
of incoming and outgoing shipments vary with the type and herd size of the premises [5].
In USAMMv2.1, we therefore relaxed the assumption that all premises send and receive the
same number of shipments and model the contribution of each individual premises i as a
function of its herd size, hi (i.e. number of animals). We assumed that this relationship
between herd size and probability to receive or send shipments is dependent on the type of
premises and its size. We include three such types: farms (F), feedlots (E), and markets
(M). For each county v, we defined three corresponding subsets of premises: PF

v , P
E
v , and

PM
v , each consisting of the sub-population of premises of the three types within the county.

Further, we assume that the relationship between hi and the probability to receive shipments
is independent from the relationship between hi and the probability of sending shipments.
Therefore we redefine wv to be two separate variables denoted w̌v when v is acting as the
receiving county, and ŵv when v is the origin county. Last, we assume that the relationships
between hi and shipment probability can be nonlinear and model them in the form of a set
of power laws with parameters specific to type (g), quarter, and direction:

w̌v,⌧ =
X

g2G

X

i2Pg
v

"
 ̌g,Q(⌧)

✓
hi

h̄g

◆�̌g,Q(⌧)

#
(S24)

for receiving counties, and

ŵv,⌧ =
X

g2G

X

i2Pg
v

"
 ̂g,Q(⌧)

✓
hi

h̄g

◆�̂g,Q(⌧)

#
(S25)

for sending counties. Here parameters  ̌g,Q and  ̂g,Q control the magnitude of the relationship
while �̌g,Q and �̂g,Q govern how the e↵ect scales with herd size (with the accent indicating
directionality). To make parameters easier to interpret and comparable across types, the
herd sizes of the premises of each type g are normalized over the average size of all premises
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of that type across the entire U.S. (i.e. h̄g =
P

i2Pg
hi · |Pg|�1). In e↵ect this means that

rather than evaluating the e↵ect of a premises of a certain size, we evaluate the e↵ect of a
premises size in relation to the e↵ect of a premises of average size. The normalization means
that for a premises of average size (for its specific type) the quantity in brackets in equations
(S24) and (S25) will evaluate to 1.0, and the parameters  ̌g,Q and  ̂g,Q can consequently be
interpreted directly as the e↵ect of a premises of average size. Further, for the farm type
we set  ̌F,Q = 1.0 and  ̂F,Q = 1.0 in order to express the e↵ect of feedlots and markets in
relation to farms (i.e. an average sized farm will always have the weight 1.0). For premises
of types farm and feedlot, hi reflect the actual herd size, but, for markets, we use the total
yearly volume (measured in head) as herd size.

In addition to the di↵erentiation between premises types and premises of di↵erent size, we
introduce a county-level e↵ect in the form of county-level livestock industry covariates. We
therefore introduce the set of covariates C, and for each covariate c 2 C we define the vector
⇣c with one element for each county. Each separate vector was standardized to have a mean
of zero and standard deviation of 0.5. The covariates included in C were operations with
sales (OS), total sales (in head, TS) and slaughter connectivity (SC). Slaughter connectivity
is a measure of the available slaughter capacity in the vicinity of the county v and was
calculated as the distance-weighted sum of annual slaughter volume in all other counties,

⇣SC,v =
X

x2V
x 6=v

lxe
�dvx/125, (S26)

where lx is the slaughter volume in head of county x, V is the set of all counties, and dvx is
the distance between the centroids of v and x. The distance is normalized over an estimated
average slaughter shipment distance in the U.S. of 125 km [3]. The e↵ect of these covariates
on the weighing of each county v was given by

žv,⌧ = exp

"
X

c2C

⇣c,v⌘̌c,Q(⌧)

#
(S27)

for the e↵ect when the county v is acting as receiver of shipments, and

ẑv,⌧ = exp

"
X

c2C

⇣c,v⌘̂c,Q(⌧)

#
(S28)

when v is acting as the sender. Here, ⌘̌c,v,Q(⌧) and ⌘̂c,v,Q(⌧) are model parameters that control
the e↵ect of each covariate c in quarter Q. Once again directionality is indicated by the
accent above the parameter. The normalization of the individual covariate vectors means
that for an average county (i.e. a county for which all covariates equal the national mean,
0.0), the covariates have no e↵ect (zv = 1.0). This is also true if all parameters weighting
the covariates (⌘̌c,Q and ⌘̂c,Q are zero for all values of c).

We incorporate the additions of these premises- and county-level weights into the defini-
tion of USAMMv2.0 by reformulating equations (S17) and (S22). For the shipment rate of
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the origin county !, the weight contributed by the premises originally given by the number
of premises in the county (w!, equation S18) is exchanged for the weight scaled according
to premises type and herd size (ŵ!, equation S25). Additionally, the weight contributed by
the premises population of the origin county is also scaled with the county-level e↵ect of
industry covariates (ẑ!, equation S28):

�!,Q(⌧) = ẑ!,⌧ ŵ!,⌧�
⇤
u(!),Q(⌧). (S29)

While in the previous version of the model, �⇤u,Q, reflected the shipment rate of any single
premises within state u, with the changes to USAMMv2.1 it is better interpreted as the rate
of shipment of an average sized farm in an average county with regard to industry covariates.

For county destination weight (equation S22), the premises count of the destination
county � was similarly exchanged for premises- and covariate weights to get

W!,�,Q(⌧) = ž�,⌧

�
w̌�,⌧ � L�|!,⌧

�
⌫u(�),Q(⌧)H

�
u(!),Q(⌧), ⇡u(!),Q(⌧), d!,�

�
. (S30)

The function of the term L�|!,⌧ is to account for the reasonable assumption that a premises
cannot send shipments to itself and was defined as

L�|!,⌧ =

8
>>>>>>>>><

>>>>>>>>>:

X

g2G

X

i2Pg
�

"
 ̌g,Q(⌧)

✓
hi

h̄g

◆�̌g,Q(⌧)

 ̂g,Q(⌧)

✓
hi

h̄g

◆�̂g,Q(⌧)

#

X

g2G

X

i2Pg
�

"
 ̂g,Q(⌧)

✓
hi

h̄g

◆�̂g,Q(⌧)

# � = !,

0 otherwise.

(S31)

That is, L�|!,⌧ corresponds to the sum of the weights related to being the destination of a
shipment, weighted by their origin weights.

The state level attraction parameter ⌫u,Q and the distance kernel function H and asso-
ciated parameters u,Q and ⇡u,Q remained unchanged from the USAMMv2.0 definition. In
order to make the model identifiable, the attraction parameter for the state of Iowa was
set to one (⌫Iowa,Q = 1.0). The choice of Iowa was somewhat arbitrary, but its large num-
ber of shipments promotes high precision of ⌫Iowa,Q = 1.0, which facilitates computational
e�ciency in estimation of the other states’ parameters, which are contrasted against this
reference state.

Despite the new additions, the likelihood function of USAMMv2.1 is equivalent to that
defined for USAMMv2.0 and is obtained by injecting the variables defined in equations (S29)
and (S30) into equations (S16) and (S23). Via the weights w̌�,⌧ , ŵ!,⌧ , ž�,⌧ and ẑ!,⌧ the new
model allows for the inclusion of county and premises level heterogeneities. However it is
also possible for the model to disregard one or both of them for certain parameter values.
The latter is equivalent to the base model in [4] which can be viewed as a special case of
USAMMv2.1 where each county has an e↵ect of industry covariates equal to one (i.e. no
e↵ect of covariates), and where every premises has equal weight regardless of size and type.
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S1.4. USAMM Likelihood

We followed [4] and modeled through eq. S14 the total probability of observing Y!,�,⌧ =
|Y!,�,⌧ | number of interstate shipments from county ! on day ⌧ to all other counties � 2 V̄u(!),
where V̄u(!) = V\Vu(!) (i.e. all counties not in the origin state) as a product of the individual
probabilities. Here, we exclude within state shipments since they are absent in the ICVI
data. This probability is equivalent to the probability of observing the shipments in the set
Y!,⌧ =

S

�2V̄u(!)

Y!,�,⌧ .

For notational convenience, we introduce the following definitions:

⇥u,Q =(u,Q, ⇡u,Q), (S32)

⇥u =(⇥u,1, . . . ,⇥u,4), (S33)

⇥ =(⇥1,1, . . . ,⇥|U|,4), (S34)

�Q =(�⇤1,Q, . . . ,�
⇤
|U|,Q), (S35)

⌫Q =(⌫1,Q, . . . , ⌫|U|,Q), (S36)

 Q =( ̌F,Q,  ̌E,Q,  ̌M,Q,  ̂F,Q,  ̂E,Q,  ̂M,Q), (S37)

�Q =(�̌F,Q, �̌E,Q, �̌M,Q, �̂F,Q, �̂E,Q, �̂M,Q), (S38)

⌘Q =(⌘̌1,Q, . . . , ⌘̌|C|,Q, ⌘̂1,Q, . . . , ⌘̂|C|,Q). (S39)

Since �!,Q(⌧) described the rate with which shipments originating from ! arose, it was
necessary to account for that the ICVI data was not a 100% sample. This was included in
the variable ✏u, which reflected this. Since the ICVI data set consisted of a 10% sample of
all outgoing ICVI shipments from every state apart from New Jersey, ✏u = 0.0 for this state
and ✏u = 0.1 for all other states in the contiguous U.S. We therefore introduce �̃u(!),Q =
✏u(!)�(!),Q. We also let q!,Q =

P

�2V̄u(!)

p(�|!),Q, where p(�|!),Q is given by equation (S23), i.e.

the probability of a shipment from county ! leaving the state. This allows us to write the
sought probability as

P!,⌧

⇣
Y!,⌧ |⇥u(!),Q(⌧),�

⇤
u(!),Q(⌧),⌫Q(⌧), Q(⌧),�(Q(⌧),⌘Q(⌧)

⌘
=

Q

�2V̄u(!)

Poisson
⇣
Y!,�,⌧

����⇤!,Q(⌧)p(�|!),Q(⌧)

⌘
=

Poisson
⇣
|Y!,⌧ |

����⇤u(!),Q(⌧)q!,Q(⌧)

⌘
MN

0

BB@

0

B@
|Y!,⌧,1|

...
|Y!,⌧,|V̄u(!)||

1

CA

�������
|Y!,⌧ |,

0

BB@

p(1|!),Q(⌧)

q!,Q(⌧)

...
p(|V̄u(!)||!),Q(⌧)

q!,Q(⌧)

1

CCA

1

CCA ,

(S40)
where MN denotes the multinomial distribution.

Again following [4], we modeled the probability considering all origin counties in state
S and all days in the considered quarter, ⌧ (Q), of year 2009 in the same way as with

P!,⌧

⇣
Y!,⌧ |⇥u(!),Q(⌧),�

⇤
u(!),Q(⌧),⌫Q(⌧), Q(⌧),�(Q(⌧),⌘Q(⌧)

⌘
in eq. S40. That is, we modeled

the probability of observing the set of transports YS,⌧ (Q) =
S

!2VS

S
⌧2⌧ (Q)

Y!,⌧ as a product of
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the individual probabilities expressed in eq. S40.

With rS,Q(⌧) =
P

!2VS

 
ŵ!,⌧ ẑ!,⌧

P
⌧2⌧(Q)

q!,Q(⌧)

!
, this is written as

PS,Q

⇣
YS,⌧(Q)

���⇥S,Q(⌧),�
⇤
S,Q(⌧),⌫Q(⌧), Q(⌧),�Q(⌧)

,⌘Q(⌧)

⌘
=

Q
!2VS

Q
⌧2⌧ (Q)

P!,⌧

⇣
Y!,⌧

���⇥u(!),Q(⌧),�
⇤
u(!),Q(⌧),⌫Q(⌧), Q(⌧),�Q(⌧),⌘Q(⌧)

⌘
=

Poisson
⇣
|YS,⌧ (Q)|

����̃S,Q|⌧ (Q)|rS,Q(⌧)

⌘
MN

0

B@

0

B@
|Y1,1,1|

...
|Y|VS |,|V̄S |,|⌧ (Q)||

1

CA

�������
|YS,⌧ (Q)|,

0

B@

p1,1,1
rS,Q⇥|⌧ (Q)|

...
p(|VS |||V̄S |),Q
rS,Q⇥|⌧ (Q)|

1

CA

1

CA .

(S41)
The full likelihood considering all shipments Y is obtained by multiplying the individual

state level probabilities in eq. S41. Thus, it is written as

LY (Y|⇥,�,⌫, ,�,⌘) =Q
Q2Q

Q
S2U

PS,Q

�
YS,⌧ (Q)

��⇥S,Q,�
⇤
S,Q,⌫Q, Q,�Q,⌘Q

�
(S42)

S1.5. USAMM Hierarchical Bayesian Model

A benefit of the Bayesian paradigm is that it provides a joint probability distribution of
all random variables. This parameter uncertainty is straightforward to carry forward to the
predictive stage by sampling repeatedly from the posterior distribution. Further, we make
use of hierarchical modelling, which allows for so called borrowing strength. In this case,
it means that estimation of state-level parameters, in particular for states with weak data,
is improved through the assumption that all state level parameters come from some U.S.
distribution, which is described by parameters also estimated in the model.

We chose to model S,Q 2 , ⇡S,Q 2 ⇡ and �
⇤
S,Q 2 �, where bold symbols denote sets

including corresponding parameters for all states and quarters, with hierarchical structure.
Here, we implement

S,Q ⇠ Log-normal (m, k)
⇡S,Q ⇠ Log-normalm�1 (m⇡, k⇡)
�
⇤
S,Q ⇠ Gamma (m�, k�)

(S43)

as prior distributions. In S43, m and k represent mean and coe�cient of variation for the
di↵erent parameters (specified as subscripts) and m�1 indicates that we use the distribution
shifted one unit to account for the assumption of ⇡S,Q > 1. The log-normal distribution is
typically parameterized by the mean and standard deviation of the logarithm of the variable,
and we denote these parameters as µ and �, respectively. The relationships to the prior

parameters for S,Q in S43 are m = e
µ��2

2 and k = (e�
2 � 1)

1
2 . Similarly, for ⇡S,Q (S43)

the relationships are expressed as m⇡ = e
µ��2

2 + 1 and k⇡ = (e�
2 � 1)

1
2 , with the di↵erence

in that m⇡ adjusts for the distribution being shifted. Further, the relationships to shape (↵)
and rate (�) in a standard parameterization of the gamma distribution are m = ↵�

�1 and
k = ↵

� 1
2 . In S43, m and k are hyperpriors that we estimate in the hierarchical structure of
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the Bayesian model. As such, they require specification of hyperprior distributions, which is
elaborated on in S1.6.

Using the notation �l and  l for prior and hyperprior, respectively, for parameter l, we
specify the full Bayesian model as

PY (⇥,�,⌫, ,�,⌘,m, k,m⇡, k⇡,m�, k�|Y) /
LY

Q
Q2Q

Q
S2U

⇥
� (S,Q|m, k)�⇡(⇡S,Q|m⇡, k⇡)��(�⇤S,Q|m�, k�)�⌫(⌫S,Q)

⇤
·

Q
Q2Q

 
Q

g2{E,M}
� ( ̌g,Q)� ( ̂g,Q)

Q
g2{F,E,M}

��(�̌g,Q)��(�̂g,Q)�⌘(⌘̌c,Q)�⌘(⌘̂c,Q)

!
·

 ()
m (m) 

()
k (k) 

(⇡)
m (m⇡) 

(⇡)

k (k⇡) 
(�)
m (m�) 

(�)

k (k�) =Q
Q2Q

Q
S2U

⇥
PS(TS,Q|⇥SQ,⌫Q, Q,�Q,⌘Q·

� (S,Q|m, k)�⇡(⇡S,Q|m⇡, k⇡)��(�⇤S,Q|m�, k�)�⌫(⌫S,Q)
⇤
·

Q
Q2Q

 
Q

g2{E,M}
� ( ̌g,Q)� ( ̂g,Q)

Q
g2{F,E,M}

��(�̌g,Q)��(�̂g,Q)�⌘(⌘̌c,Q)�⌘(⌘̂c,Q)

!
·

 ()
m (m) 

()
k (k) 

(⇡)
m (m⇡) 

(⇡)

k (k⇡) 
(�)
m (m�) 

(�)

k (k�)

(S44)

S1.6. USAMM Prior Construction

We implement a log-normal prior for S,Q (in eq. S43) because it is defined on the range
(0,1) which is the domain of a log-normal distribution. The choice was further motivated by
our belief that S,Q should obtain its lowest probability at S,Q = 0 or S,Q = 1. The same
reasoning was applied to ⇡S,Q 2 (1,1), hence the use of a shifted log-normal distribution.
For �⇤S,Q, our choice of prior provided conjugacy, which allows for Gibbs sampling and hence
fast computation (see S1.7).

Further, the hyperpriors for S,Q, ⇡S,Q and �
⇤
S,Q are in the three cases expressed as

expectations on the prior parameters mean and coe�cient of variation. To assign hyperpriors
for (m,m⇡,m�, k, k⇡, k�), we first identify a plausible parameter range within which we
believe with 95% certainty encapsulates the true (hyper)parameter value. Based on this
range, we calculate the parameters used to define each distribution. Following this strategy,
we chose a log-normal distribution with 95% of its density between 10km and 4,000 km as a
prior for m. We motivate these values based on that 10 km would be considered as a short
typical shipment distance whereas the upper limit is of the same order of magnitude as the
coast to coast distance in the U.S and would thus correspond to a long distance. For m⇡,
the choice is less straightforward, but our aim is to express our vague belief by allowing a
wide range of shapes of the kernel. Due to the parameter range of ⇡S,Q, (1,1), we chose
a shifted log-normal hyperprior distribution and chose parameters such that m⇡ have 95%
of its density between 2 and 1000. The lower value of ⇡S,Q = 2 corresponds to a kernel
with steep slope, since the drop in kernel value from 50% to 5% of its value at distance
zero would occur between distances  and 2 km. Conversely, the value of ⇡S,Q = 1000
corresponds to a fat-tailed kernel with the same decrease in kernel value at distances  to
1000 km. Our prior beliefs of the mean of �⇤S,Q (i.e. m�) were expressed as a log-normal
distribution with the interpretation that 95% of density is within 0.1 and 100 shipments
per year for an average farm. This expectation is equivalent to a daily rate in the range
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(0.00027,0.27) shipments per day. Note that other premises types are modeled relative to
farms’ shipping rates and may exhibit substantially higher rates. As in previous cases, the
parameter choices here correspond to a wide range of plausible values and mirror our vague
a priori beliefs regarding these values.

For the hyperprior distributions of (k, k⇡, k�), we chose log-normal distributions due
to the range on which they are defined and that the log-normal is of a form that assigns
lowest density to values close zero and extremely large values. Large coe�cient of variation
indicates that the parameters have high heterogeneity between states and small values would
indicate the opposite. To deduce parameters for this, we expressed our expectations on how
similar the parameters are as a ratio between the mean and the 97.5th percentile of the
corresponding m,m⇡ and m�. We considered a value of two being reasonable as a lower
limit, this is equivalent to a ratio of four between the 2.5th and 97.5th percentile. As upper
limit we chose a value of ten which corresponds to a ratio of 100 between the 2.5th and 97.5th

percentile. If the mean of S (i.e. m) is estimated at 100 km. The interpretation of the
hyperprior would be that limits 2 and 10 correspond to distributions of  with 95% of its
density in the range (50, 200) km and (10, 1000) km, respectively. From the reasoning above,
hyperpriors  ()

k (k),  
(⇡)

k (k⇡) and  (�)

k (k�) were implemented as log-normal distributions
with 95% of the density between 0.3650 and 1.724.

Parameters  , � and ⌘ were modeled as shared across the U.S. These parameters, and
also ⌫, were modeled without a hierarchical structure with priors

⌫S,Q ⇠ log-normal95%(0.01, 100),
 ̌g,Q ⇠ Half-Cauchy (1) ,
 ̂g,Q ⇠ Half-Cauchy (1) ,
�̌g,Q ⇠ N95% (0, 1) ,
�̂g,Q ⇠ N95% (0, 1) ,
⌘̌c,Q ⇠ N95% (�1, 1) ,
⌘̂c,Q ⇠ N95% (�1, 1) ,

(S45)

where log-normal95% (l, u) and N95% (l, u) denote a log-normal and a normal distribution,
respectively, with 95% of its density within the range (l, u). As prior for ⌫S,Q, denoted
�⌫(⌫S,Q), we let our vague beliefs of the propensity to attract shipments be represented
by the a log-normal distribution with 95% of its density within the range (0.01, 100). The
interpretation of this is that we believe with 95% certainty that the parameter falls within
the wide range from 0.01 to 100 times the propensity to attract shipments for our reference
state (Iowa). For �̌g,Q and �̂g,Q, the range (0, 1) were based on our prior beliefs that the
number of in-going or out-going shipments is unlikely to scale hyperlinearly or negatively
with premises size. Yet, we do not exclude these possibilities and permit estimates outside of
this range, should the data strongly deviate from our a priori assumption. Our prior beliefs
for the parameters  ̌E,Q,  ̂E,Q,  ̌M,Q and  ̂M,Q in S45 are expressed through a Half-Cauchy
Distribution with scale equal to one. The Half-Cauchy distribution supports values ranging
from zero to infinity and we chose this distribution due to that it is a wide distribution and
therefore mirrors our vague beliefs regarding these parameters. Finally, we chose the prior
distribution for ⌘̌c,Q and ⌘̂c,Q as a Normal distribution with 95% of the density between minus
one and one. This symmetric distribution does not favor positive nor negative values; we
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give equal a priori weight to increased and decreased out- and/or incoming shipments with
higher value of each covariate.

S1.7. USAMM Computation

Since eq. S44 is not of a standard form, it is not possible to make random draws from the
posterior directly and we must rely on numerical methods. We therefore used a Markov Chain
Monte Carlo (MCMC) algorithm to sample from the joint posterior of all model parameters.
The idea behind this is to create a Markov Chain with limiting state distribution equal to the
posterior and from there obtain samples from the posterior distribution. Details on MCMC
can be found in e.g. [6].

In practice, we did not use the likelihood (eq. S42) with factors of the form as expressed
in eq. S41. Since, there have been no observed shipments for the majority of combinations
of origin- and destination counties and days, most of the |Y!,�,⌧ | in eq. S41 are equal to zero,
which means a simplification of the expression can speed up calculations. The corresponding
terms in the multinomial distribution are thus equal to 1 and can therefore be disregarded. As
opposed to [4], we here take not only state level di↵erences into account but also seasonality
and we therefore split the likelihood (S42) into a product of state and season specific terms
as

LY (Y|⇥,�,⌫, ,�,⌘) =Q
Q2Q

Q
S2U

PS,Q

�
YS,Q|⇥S,Q,�

⇤
S,Q,⌫Q, Q,�Q,⌘Q

�
/

Q
Q2Q

Q
S2U

⇣
Poisson

⇣
|YS,Q|

����̃S,Q ⇥ |⌧Q|⇥ rS,Q

⌘ Q
y2YS

⇣
p(�y |!y),Q
q(�t|!t),Q

⌘
.

(S46)

That is, the multinomial distribution is expressed as a product, where every factor cor-
responds to one observed transport. The interpretation of eq. S46 is the probability of
observing |YS,Q| transports from state S 2 U in quarter Q, multiplied with the probabili-
ties of the observed shipments y, 8y 2 YS,Q having destination � 2 V̄S and origin ! 2 VS

conditional on the transports leaving the state.
With the exception of �, where the choice of prior provided conjugacy, conditional distri-

butions are not of standard form. We therefore used Gibbs sampling for � and implemented
Metropolis-Hastings updates [7] of all other parameters to obtain samples from the posterior
distribution (eq. S44). For this, we created a Markov Chain with transition distribution
⇧(yprop|yacc) where yprop and yacc denotes the proposed and current state of the Markov
Chain respectively. This transition distribution is created as a product of the proposal dis-
tribution Q(yprop|yacc) from which new parameter values are proposed and an acceptance
ratio ⌥ (yprop|yacc) that specifies the probability of accepting the proposed value as a sample
drawn from the posterior distribution. By choosing ⌥ (yprop|yacc) to be

⌥(yprop|yacc) = min

✓
1,

Q(yacc|yprop)PT(yprop)

Q(yprop|yacc)PT(yacc)

◆
, (S47)

the transition distribution

⇧(yprop|yold) = Q(yprop|yacc)⌥ (yprop|yacc) (S48)
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will have its limiting state distribution equal to the target density PY, which is the posterior
distribution (eq. S44).

We updated S,Q and ⇡S,Q�1 jointly with a bivariate normal random walk on the log scale
(i.e. we proposed ln(S,Q) and ln(⇡S,Q � 1) from a bivariate normal distribution). For the
parameters ⌫, we used a multivariate normal random walk on the log scale in 47 dimensions.
Here, ⌫Iowa,Q = 1 was excluded since it was fixed and used as reference. Parameters  E,Q and
 M,Q, modeling the e↵ect of premises types, were proposed jointly on the log-scale, using a
multivariate normal distribution. That is, the random walk was performed on the parameters
(�F,Q,�E,Q,�M,Q, ln( E,Q), ln( M,Q), ⌘1,Q, ⌘2,Q, ⌘3,Q) for both parameters governing sending
and receiving, and here,  F,Q is excluded since it is used as reference for  E,Q and  M,Q.
All hyperparameters (mx, kx) were proposed from a bivariate normal distribution on the log
scale. For the parameters proposed from multivariate normal distributions, we implement
an optimized version of the Robbins-Monro algorithm introduced in [8], to facilitate good
mixing. This involves tuning the covariance of the proposal distribution and a scaling factor
so that the MCMC algorithm reaches a long term acceptance ratio equal to a predefined
value, here set to 0.234 as proposed in [9]. Since the choice of prior for � provided conjugacy,
we were able to implement Gibbs-sampling and sampled directly from their conditional
distributions

�
⇤
S,Q ⇠ Gamma

�
↵�|YS,⌧Q |, �� + |⌧ |rS,Q

�
. (S49)

Some of the parameters exhibited a bimodal structure in the corresponding marginal
posterior distributions, which provided poor mixing using the technique described in [8]. To
facilitate good mixing for these parameters, we made preliminary runs to identify the two
high density regions (HDR) and assigned the accepted parameters from the MCMC chains to
one of the two HDRs. Based on the samples in each partitioning, we calculated the sample
mean and covariance matrix and multiplied the latter by four to obtain reasonably wide
proposal distributions for each HDR. To create a proposal distribution from the estimation
of the two HDRs, we proposed from the two distributions with probability proportional to
the number of samples in each HDR in the preliminary runs. Note that this technique does
not a↵ect the ergodicity or change the limiting state distribution of the Markov Chain, but
only provides an ad-hoc solution to circumvent the poor mixing for the parameters with
bimodal marginal posteriors.

We performed nine runs of the MCMC algorithm for beef and dairy and each run consisted
of 750,000 iterations in which we discarded 50,000 as burn in. To avoid large output files, we
thinned our sampler and kept every 100th sample. We implemented over-dispersed seeding
of parameters to assert convergence to the same region in every implementation, which was
evaluated through Potential Scale Reduction Factor (PSRF). We also estimated e↵ective
sample size [10].

S1.8. Shipment simulation

USAMMv2.1 was used within USDOS to simulate shipments from infected premises every
timestep (day) ⌧ . This was done by first simulating the number of shipments leaving each
county ! in which there were infected premises as a Poisson random variable Y ⇤

!,⌧ according to
equation (S15). Second, the shipments were distributed among all counties by sampling from
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a multinomial distribution with n = Y
⇤
!,⌧ and a vector of probabilities with elements given

by equation (S23), so that each destination county � was assigned a number of shipments
Y

⇤
!,�,⌧ arriving from ! (see supplemental material equation S40). Third, origin premises for

the Y
⇤
!,�,⌧ shipments between ! and � were sampled from the premises population of ! as a

multinomial random variable with n = Y
⇤
!,�,⌧ , and a vector of probabilities P with elements

associated with each premises and proportional to the individual weights in equation (S24):

Pi =  ̂g(i),Q(⌧)

✓
hi

h̄g(i)

◆�̂g(i),Q(⌧)

, (S50)

where g(i) is the type of premises i. If the sampled origin premises was one of the infected
premises, a destination premises was also sampled from among the population of premises
in � in a similar fashion, but from a categorical distribution (i.e. a multinomial distribution
with n = 1) with weights associated with the individual premises in � according to

Pi =  ̌g(i),Q(⌧)

✓
hi

h̄g(i)

◆�̌g(i),Q(⌧)

. (S51)

In order to simulate shipments corresponding to a complete shipment network, ✏u was set
to 1.0 for all states u for the purpose of simulating shipments within USDOS. Further, the
reason for only simulating shipments from infected premises was that in USDOS shipment
from non-infected premises has no e↵ect on transmission dynamics whatsoever, and omitting
this step for all counties and premises where no infection was present avoided a considerable
amount of unnecessary calculations.

S2. Supplemental Results

S2.1. Partial Transition

The maximum infectious period a↵ects both how long an individual premises remains
infectious, and how long an individual simulation takes to run. We examined the run time
and outbreak metrics of the 15, 20, and 30-day cuto↵ points to balance computational
e�ciency with accurately capturing disease dynamics. As expected, we find that increasing
the maximum infectious period cut-o↵ increases the run time length. A single base scenario
replicate without partial transition took on average 10.61 seconds, a base scenario replicate
with 15-day cuto↵ took on average 24.3 seconds, 20-day cuto↵ took on average 29.71 seconds,
and 30-day cuto↵ took on average 34.77 seconds (Table S3). The standard deviation around
single replicate run times also increased as the cuto↵ period increased.
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Table S3: Run times for USDOSv2.1 base scenario for three di↵erent maximum infectious period lengths.

The single replicate lengths show single simulations seeded in one of the 3049 counties.

Partial Transition

Maximum Infectious Period

No Partial
Transition

15 Day 20 Day 30 Day

Mean single replicate
length (seconds)

10.61 24.30 29.71 34.77

Standard deviation of
single replicate length
(seconds)

47.48 116.18 143.35 167.29

Our results show that the predicted distribution of outbreak duration di↵ers substan-
tially between the 15 day cut-o↵ scenario and the other two scenarios (Figures S4 & S5).
Specifically, outbreak duration is predicted to be shorter in the 15 day cut-o↵ scenario. This
di↵erence is most clearly seen in the northern plains regions in the median outbreak maps;
the 20 and 30 day cut-o↵ scenarios predict longer duration than the 15 day cut-o↵ scenario in
this region (Figures S5a versus S5b & S5c). These results also show that outbreak duration
predictions from the 20 and 30 day cut-o↵ scenarios are similar, and do not show the marked
di↵erences seen when comparing to the 15 day cut-o↵ scenario.

Similar to the duration results, the total number of infected premises results from the
20 and 30 day cut-o↵ scenarios have few di↵erences (Figures S6). Additionally, the 15 day
cut-o↵ scenario results for total infected premises are much more similar to the 20 and 30
day cut-o↵ scenarios than the results for duration (Figure S6).

Overall, we find that the variation in predicted outbreaks is much lower for total infected
premises than for outbreak duration (Figures S4 & S6). This finding is consistent with
the expected base scenario outcome of adding partial transition. The scaling of the partial
transition function ensured that the overall level of transmission was the comparable between
USDOSv2.0 and USDOSv2.1. Since transmission rates were informed by data (see [1] for
details), the scaling of the partial transition function prevented the addition of internal
dynamics of premises in USDOS from artificially amplifying spread. Therefore, since the
scaling factor s accounts for the maximum infectiousness cut-o↵ it is unsurprising that the
results from the total infected premises are similar among the three scenarios (Figure S6).
Similarly, the predicted outbreak duration should get longer when the maximum infectious
period value is increased; a pattern we see when comparing the three di↵erent cut-o↵ scenario
results (Figure S4). However, the predicted outbreak duration changes very little between
the 20 and 30 day cut-o↵ scenarios, suggesting that the increase in maximum infectious value
in this range has little e↵ect on the outbreak dynamics.

The similarity between the 20 and 30 day cut-o↵ scenario results for both outbreak
duration and infectious period, are consistent with the shape of the partial transition curve,
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which begins to plateau around 15 days (Figure S3). Our results suggest that a day 15 cut-o↵
is not su�ciently long enough to capture the within-herd outbreak trajectory. However, a 20
day cut-o↵ produces similar results to a 30 day cut-o↵ across multiple outbreak trajectories.
Additionally, the 20 day cut-o↵ scenario had shorter run times, making it both long enough
to capture the outbreak dynamics and short enough to be manageable from a computational
perspective. Based on these results, the default maximum infectious period in USDOSv2.1
is 20 days (Table S1).
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(a)

(b)

Figure S4: Outbreak duration for base scenario simulations with three partial transition maximum infectious

period cut-o↵ points. Distributions of duration of (a) less than 100 days and (b) greater than 100 days for

simulations with a maximum infectious period of 15 days (orange, left), 20 days (purple, center) and 30 days

(blue, right).
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(a) (b)

(c)

Figure S5: Median outbreak duration when infection is seeded in each county, summarized across 304,900

simulations for each map with a maximum infectious period of (a) 15 days, (c) 20 days and (c) 30 days.
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Figure S6: Distribution of number of infected premises for base scenario simulations with more than 10

infected premises and with a maximum infectious period of 15 days (orange, left), 20 days (purple, center)

and 30 days (blue, right).

Table S4: Comparison between median and upper 97.5th percentile of outbreaks for base scenario without

partial transition and with partial transition.

Duration
Number of

Premises Infected
Number of

Counties Infected

Model
Scenario

Median
Upper
97.5th

Median
Upper
97.5th

Median
Upper
97.5th

Base scenario
without
partial
transition

13 258 1 23877 1 1459

Base scenario
with partial
transition

19 358 1 26334 1 1606
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(a) without partial transition (b) with partial transition

(c) without partial transition (d) with partial transition

Figure S7: (a,c) Median and (b,d) upper 97.5th percentile outbreak duration when infection is seeded in

each county, summarized across 304,900 simulations for each map. (a,b) show the base scenario without

partial transition and (c,d) show the base scenario with partial transition. Panel (b) is the same map as in

Figure S5b.

(a) without partial transition (b) with partial transition

Figure S8: (a,c) Median number of infected premises when infection is seeded in each county, summarized

across 304,900 simulations for each map. (a) shows the base scenario without partial transition and (b)

shows the base scenario with partial transition.

24



(a) without partial transition (b) with partial transition

(c) without partial transition (d) with partial transition

Figure S9: (a,c) Median and (b,d) upper 97.5th percentile number of counties infected when infection is

seeded in each county, summarized across 304,900 simulations for each map. (a,b) show the base scenario

without partial transition and (c,d) show the base scenario with partial transition.
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S2.2. USAMM Simple and Refined Versions for Disease Transmission Type
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Figure S10: Median and 95% central credibility intervals of posterior estimates of USAMMv2.1 parameters

modeling e↵ects on shipment rate exclusive to the refined version. Parameters are coe�cients ( ) and

exponents (�) of the power law relationships between herd size and premises weight, for premises types farm

(F), feedlot (E) and market (M); as well as scaling exponents (⌘) for the industry covariates operations with
sales (OS), total sales in head (TS) and slaughter connectivity (SC). Estimates for the quarters (Q) of the

year indicated by colors with the leftmost estimate in each group representing Q1 and the following quarters

in sequence to the right. Estimates for ⌘F,Q for both directions and commodities were fixed at 1.0 in the

model.
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Beef shipment degree distributions

Figure S11: County-level degree distributions of logged outgoing (A and B) and incoming (C and D) beef

shipments for the simplified USAMM implementation (A and C), and the refined implementation (B and D).

The simplified implementation excludes e↵ects of county industry covariates and premises size scaling while

the refined includes such e↵ects. The maps show the median degree of each county across 1,000 replicate

beef networks; the inset histograms illustrate the logged relative frequency distribution of degree across all

counties in all 1,000 replicates.
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Figure S12: County-level degree distributions of logged outgoing (A and B) and incoming (C and D) dairy

shipments for the simplified USAMM implementation (A and C), and the refined implementation (B and D).

The simplified implementation excludes e↵ects of county industry covariates and premises size scaling while

the refined includes such e↵ects. The maps show the median degree of each county across 1,000 replicate

dairy networks; the inset histograms illustrate the logged relative frequency distribution of degree across all

counties in all 1,000 replicates.
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(a) IP cull, DC vacc. run with USAMMv2.1 sim-

ple

(b) IP cull, DC vacc. run with USAMMv2.1

refined

(c) IP cull 10km ring vacc. run with US-

AMMv2.1 simple

(d) IP cull 10km ring vacc. run with US-

AMMv2.1 refined

Figure S13: The proportion of local transmission when infection is seeded in each county, summarized across

304,900 simulations for each map. (a,b) show the IP cull and DC vaccination scenario, (c,d) show the IP

cull and 10 km ring vaccination scenario. (a,c) show results from USDOS run with run with USAMMv2.1

simple (b,d) show results from USDOS run with run with USAMMv2.1 refined.

29



Figure S14: Number of animals infected > 1000 across each scenario, comparing our simple and refined

model results.

Figure S15: Number of counties infected > 50 across each scenario, comparing our simple and refined model

results.
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Table S5: Comparison between median and upper 97.5th percentile of outbreaks for each control scenario

using the simple and refined models.

Duration
Number of

Premises Infected
Number of

Counties Infected

Model
Scenario

Median
Upper
97.5th

Median
Upper
97.5th

Median
Upper
97.5th

Base
scenario,
simple

13 258 1 23877 1 1459

Base
scenario,
refined

13 259 1 23167 1 1385

3km ring
vaccination,
simple

13 202 1 18665 1 1255

3km ring
vaccination,
refined

13 198 1 18084 1 1220

10km ring
vaccination,
simple

13 201 1 18567 1 1249

10km ring
vaccination,
refined

13 198 1 18014 1 1215

DC
vaccination,
simple

13 180 1 15976 1 1183

DC
vaccination,
refined

13 170 1 14942 1 1127
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(a) USDOS with USAMMv2.1 simple (b) USDOS with USAMMv2.1 refined

(c) USDOS with USAMMv2.1 simple (d) USDOS with USAMMv2.1 refined

Figure S16: (a,c) Median and (b,d) upper 97.5th percentile number of infected premises when infection is

seeded in each county, summarized across 304,900 simulations for each map. (a,b) show the base scenario

run with USAMMv2.1 simple and (c,d) show the base scenario run with USAMMv2.1 refined.
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(a) IP cull, DC vacc. run with USAMMv2.1 sim-

ple

(b) IP cull, DC vacc. run with USAMMv2.1

refined

(c) IP cull 3km ring vacc. run with USAMMv2.1

simple

(d) IP cull 3km ring vacc. run with US-

AMMv2.1 refined

(e) IP cull 10km ring vacc. run with US-

AMMv2.1 simple

(f) IP cull 10km ring vacc. run with US-

AMMv2.1 refined

Figure S17: The upper 97.5th percentile number of infected premises when infection is seeded in each county,

summarized across 304,900 simulations for each map. (a,b) show the IP cull and DC vaccination scenario,

(c,d) show the IP cull 3 km ring vaccination scenario and (e,f) show the IP cull and 10 km ring vaccination

scenario. (a,c,e) show results from USDOS run with run with USAMMv2.1 simple (b,d,f) show results from

USDOS run with run with USAMMv2.1 refined.
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S2.3. Sensitivity Analysis

Figure S18: Full sensitivity results for each model. Symbol * indicates significance at p = 0.05, ** indicates

significance at p = 0.01, and *** indicates significance at p = 0.001.
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