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Supplementary Materials:  

 

Supplementary S1. Long-term trends of weather characteristics in the Great Hungarian Plain based on 120 years of 

meteorological data 

 

We analyzed 120 years of data collected from two meteorological stations (Budapest and Szeged) using simple linear regression 

models (sources of data: https://odp.met.hu/climate/station_data_series/daily/from_1901/mean_temperature/, 

https://odp.met.hu/climate/station_data_series/daily/from_1901/precipitation_sum/).  

 

In the case of precipitation, the data of both stations showed a decrease in the amount of annual precipitation; however, the regres-

sions were significant only on the station's data in Budapest (Figures S1ab). At our stations in Budapest, precipitation decreased 

while temperature increased. 

 
Figure S1a. Regression of the 120 years annual precipitation data in Budapest meteorological station. 

 

 
 

Figure S1b – Regression of the 120 years annual precipitation data in Szeged meteorological station.  

https://odp.met.hu/climate/station_data_series/daily/from_1901/mean_temperature/
https://odp.met.hu/climate/station_data_series/daily/from_1901/precipitation_sum/
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The mean annual temperature data showed an increase in the mean annual temperature in both stations however, only the regression 

of Budapest station data was significant Budapest (Figures S1cd). The rise of the temperature was striking, especially since 2000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1c – Regression of the 120 years mean annual temperature data in Budapest meteorological station. 

 

 
 

Figure S1d – Regression of the 120 years mean annual temperature data in Szeged meteorological station.  
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We divided the 120-year dataset into two parts: from 1901 to 1979 and from 1980 to 2020, and we calculated regression for both 

datasets separately.  

 
 

Figure S1e – Regression of the annual precipitation data in Budapest meteorological station. The red line shows the regression line 

for the 1901–1979 period (y=1063.52 – 0.22x, R2=-0.01, p=0.688) and the blue line shows the 1980–2020 period (y=-745.15 + 0.64x, R2=-

0.021, p=0.69). 

 
Figure S1f – Regression of the annual precipitation data in Szeged meteorological station. The red line shows the regression line for 

the 1901-1979 period (y=2222.84 – 0.865x, R2=0.02, p=0.114) and the blue line shows the 1980-2020 period (y=-4949.86 + 2.73x, R2=0.04, 

p=0.11). 
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Figure S1g – Regression of the mean annual temperature data in Budapest meteorological station. The red line shows the regression 

line for the 1901-1979 period (y=-5.24 + 0.008x, R2=0.072, p=0.0097) and the blue line shows the 1980-2020 period (y=-105 + 0.0585x, 

R2=0.539, p<0.0001). 

 

 
 

Figure S1h – Regression of the mean annual temperature data in Szeged meteorological station. The red line shows the regression 

line for the 1901-1979 period (y=24.94 – 0.007x, R2=0.028, p=0.075) and the blue line shows the 1980-2020 period (y=-100.8 + 0.056x, 

R2=0.537, p<0.0001). 

 

 

In Budapest, there were significantly increasing mean annual temperature trends for both periods (S1g). There was a slight and non-

significant decrease in the first period and a steep and significant increase in the second one in Szeged (S1h).  



Land 2022, 11, 378 5 of 14 
 

 

 

We calculated the coefficient of variation (CV%) of both parameters (mean annual temperature and precipitation) by dividing the 

120 years into 20 years periods. The results are shown in Table S1. 

 

Table S1. Coefficient of variation (CV%) of the two meteorological stations' mean annual temperature and precipitation. 

 

years 

Budapest Szeged 

Mean Annual 

Precipitation 

CV% 

Mean Annual 

Temperature 

CV% 

Mean Annual 

Precipitation 

CV% 

Mean Annual 

Temperature 

CV% 

1901–1920 21.32 4.73 18.9 5.29 

1921–1940 17.92 7.19 22.76 8.12 

1941–1960 17.72 6.22 18.27 8.18 

1961–1980 18.53 5.48 18.27 5.31 

1981–2000 23.33 5.38 23.58 6.48 

2001–2020 22.35 6.74 25.55 6.08 
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Supplementary  S2. Estimating species richness from transect data at different scales 
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Supplementary S3. Definition and calculation of the Pálfai aridity index 

 

We calculated the modified Pálfai Drought Index (PaDI0) with the following formula: 

 

 

 

 

 

 

 

where: 

PaDI0 – Pálfai Drought Index, °C/100 mm 

Ti - average monthly temperature from April to August (°C) 

Pi – monthly precipitation from October to September (mm) 

wi – weighting parameter (Table  S2) 

c – constant (10 mm) 

 

Table S2. Weighting parameters for PaDI0 index 

 

Month  wi weighting parameter 

October 0.1 

November, December 0.4 

January–April 0.5 

May 0.8 

June 1.2 

July 1.6 

August 0.9 

September 0.1 
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Supplementary S4 Calculation and testing the synchrony index 

 

We calculated the synchrony index (Aij) between species richness time series of sites with the following formula: 

    

where; 

Aij – synchrony index 

Dij – number of times series i and j move in same direction 

T – number of observations 

 

 
Figure S4a. Example for the calculation of synchrony index between species richness (mean S) time series of sites (observed at 2 m 

scale). 

 

 
Figure S4b. Example for testing significance of observed mean synchrony index against a null model. Null model = expected syn-

chrony using the same species richness values but randomizing these values among dates (999 complete randomizations over time). 
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Supplementary S5 Calculation of temporal associations between peaks (extrema) of weather events and species rich-

ness 

 

We used information theory models (Juhász-Nagy and Podani 1983, Juhász-Nagy 1984) for calculating temporal association (coinci-

dence) between extrema of weather (drought events) and minima of species richness. First, we created a variables  dates binary 

contingency table where the presence of droughts and richness minima were marked by “1” while the absence of these events were 

marked by “0”. 

 

 
 

Here we present a real example with detailed calculations: 

 
We test whether the presences of variables were associated (were different from random) by calculating the contingency information 

of this table compared with null models where presences within each of the variables were randomized. 

Contingency Information is expressed as the difference between the Pooled Entropy and the Joint Entropy of the binary table. 

 

First, we calculate the pooled entropy (by summing up the entropy of each variable): 

 
 



Land 2022, 11, 378 10 of 14 
 

 
 

Then we calculate the joint entropy (the entropy of variable combinations):We rearranged the original binary table according to the 

variable combinations  

and counted the frequency of each combination. Joint entropy is the sum of 

entropies of these combinations. 

 

 
Multiple associations of variables (i.e. the contingency information of binary table) 

is expressed as the difference between the Pooled Entropy and the Joint Entropy: 

 
 

Testing significance of observed multiple association by null model.  

Null model = expected association using the same number of peaks but randomizing these peaks among dates (999 complete ran-

domizations over time). 
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The related calculations have been performed by the comspat R package (comspat; see Tsakalos 2022; Tsakalos et al. 2022). 
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Supplementary S6. Temporal trends of weather characteristics and species richness 

 

S6.1. Temporal trends of weather characteristics 

 

We checked the temporal trends of the climate variables (precipitation, mean annual temperature and Pálfai Drought Index) using a 

linear mixed-effect model (LME). Specifically, the fitted model used year as the predictor and all climatic variables as the response 

variables. Because we were interested in searching for overall climatic trends, we included the site as a random factor. We calculated 

two measures of precipitation (mm); the first was taken as the total precipitation falling 4 months before the sampling (Prec_4m), 

and the second measure included 12 months before the sampling (Prec_12m). Pálfai Drought Index and MAT. We calculated all of 

the values climatic values at each site (i.e. Battonya, Csévharaszt and Fülöpháza) and sampling year. We tested for normality of the 

climate data using the Shapiro-Wilk test. Then we used Pinheiro and Bates (2000) ‘nlme’ R package and the „corAR1” function to 

check for first-order autocorrelation between the predictors. Lastly, we used Barton’s (2020) “MuMIn” R package and the 

“r.squaredGLMM” function to calculate the models R2 values; hence providing different measures of the variability explained by the 

fixed effects (R2 marginal) and the variability explained by the random entire model (R2 conditional). There were no significant trends 

in either site (R2 = 0.0004). However, we found a very strong positive first-order autocorrelation (Phi=0.99); closer inspection of the 

data revealed that the variables MAT and Pálfai were highly positively correlated through time and across study sites. 

 

All of the analyses were conducted in R version 3.6.3. (R Core Team 2020). 

 

Table S6.1. Parameters of the linear mixed effect model for climate variables (Prec_4m = sum of precipitation [mm] 4 months before 

sampling; Prec_12m = sum of precipitation [mm] 12 months before sampling; Pálfai = Pálfai Drought Index; MAT = mean annual 

temperature [°C]). 

 

Source Value Std. Error DF t value p value R2m R2c 

intercept 2013.88 5.99 31.00 336.24 0.00 

0.0004 0.0004 

Prec_4m 0.00 0.00 31.00 -0.53 0.60 

Prec_12m 0.00 0.00 31.00 -0.03 0.98 

Pálfai -0.10 0.11 31.00 -0.87 0.39 

MAT 0.08 0.34 31.00 0.22 0.83 

 

S6.2. Temporal trend in species richness 

 

We checked the temporal trend of species richness using LMEs. Specifically, we prepared three separate LMEs (one for each site); 

each model used years as the predictor and species richness as the response variable and included scale (0.1 m, 2 m and 40 m) as a 

random factor. Normality and autocorrelation assumptions were checked following the method described above. One dataset (40 m 

data in Fülöpháza site) was log(1+x) trasformed because of non-normal distribution. There were no significant trends in species 

richness in either sites. There was a strong positive first-order autocorrelation in case of the Battonya site (Phi = 0.71), while a weak 

negative autocorrelation was detected in Csévharaszt (Phi = -0.2) and in Fülöpháza (Phi = -0.18). 
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Table S6.2. Parameters of the linear mixed effect model for species richness  

 

Site Source Value Std. Error DF t value p value R2m R2c 

Battonya 
intercept 262.10 740.33 26.00 0.35 0.73 

0.00036 0.9472 
year -0.12 0.37 26.00 -0.33 0.75 

Csévharaszt 
intercept 112.96 93.04 38.00 1.21 0.23 

0.00067 0.9694 
year -0.05 0.05 38.00 -1.13 0.27 

Fülöpháza 
intercept 13.39 9.09 38.00 1.47 0.15 

0.0017 0.9584 
year -0.01 0.00 38.00 -1.35 0.18 
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Supplementary S7. Relationships species richness and weather characteristics 

 

We tested the relationship between species richness values, precipitation and mean annual temperature data with linear mixed effect 

models. We calculated the regression for the three spatial scales separately with site as a random variable. The normality assumption 

of the data was tested by Shapiro-Wilk test. First-order autocorrelation was checked with „corAR1” function (Pinheiro and Bates 

2000). P-values of multiple tests was adjusted by Bonferroni-Holm method (Holm 1979). R2 values were obtained by 

“r.squaredGLMM” function in the “MuMIn” package (Barton 2020). 

Only Pálfai index and species richness showed a significant relationship at 2m spatial scale (p=0.025) but the adjusted p value was 

not significant. There was a strong positive first-order autocorrelation in case of 10 cm spatial scale (Phi=0.53) and in 40 m spatial 

scale (Phi=0.58), while no autocorrelation was detected in 2 m spatial scale (Phi= 0.04). 

Analyses were conducted in R version 3.6.3. (R Core Team 2020) by using the ‘nlme’ package (Pinheiro et al. 2020). 

 

Table S7.1. Parameters of the linear mixed effect model for species richness and climate variables (s10cm = species richness in 10 cm 

spatial scale; s2m = species richness in 2 m spatial scale;  s4m = species richness in 4 m spatial scale;  Prec_4m = sum of precipitation 

4 months back from the date of sampling; Prec_12m = sum of precipitation 12 months back from the date of sampling; Pálfai = Pálfai 

Drought Index- PADI; MAT =  mean annual temperature)  

 

Scale Source Value Std. Error DF 
t 

value 
p value 

Corrected p 

value 
R2m R2c 

s10cm 

intercept 40.18 66.33 30.00 0.61 0.55  

0.01 0.94 

year -0.02 0.03 30.00 -0.54 0.59 1.00 

Prec_4m 0.00 0.00 30.00 0.14 0.89 1.00 

Prec_12m 0.00 0.00 30.00 0.81 0.42 1.00 

Pálfai -0.11 0.06 30.00 -1.94 0.06 0.86 

MAT -0.14 0.16 30.00 -0.85 0.40 1.00 

s2m 

intercept 218.32 129.31 30.00 1.69 0.10  

0.02 0.95 

year -0.10 0.07 30.00 -1.53 0.10 1.00 

Prec_4m 0.00 0.00 30.00 0.98 0.34 1.00 

Prec_12m 0.00 0.00 30.00 -0.88 0.38 1.00 

Pálfai -0.40 0.17 30.00 -2.36 0.0247* 0.37 

MAT -0.34 0.44 30.00 -2.36 0.44 1.00 

s40m 

intercept 211.79 531.10 30.00 0.40 0.69  

0.02 0.91 

year -0.08 0.27 30.00 -0.30 0.76 1.00 

Prec_4m 0.00 0.01 30.00 0.28 0.78 1.00 

Prec_12m 0.00 0.00 30.00 -0.79 0.44 1.00 

Pálfai -0.75 0.42 30.00 -1.76 0.09 1.00 

MAT -1.59 1.22 30.00 -1.31 0.20 1.00 

 

 


