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Supplemental Information belonging to the manuscript “A review of crop husbandry and soil 
management practices using meta-analysis studies” by R. Rietra, M. Heinen, O. Oenema 

 Introduction 
In the main text the following ten crop husbandry and soil management practices were considered: 

1. Crop type & crop rotations, including intercropping, cover crops and perennial crops 
2. Nutrient management 
3. Irrigation + fertigation 
4. (Controlled) Drainage 
5. Tillage 
6. Pest management 
7. Weed management 
8. Crop residue management & mulching 
9. Mechanization & technology 
10. Landscape management 

For each of these practices main effects as reported in meta-analysis studies (plus a few reviews) were 
collected. Effects were divided into five so-called areas of interest (hereafter: aoi): 

a) Agronomic effects (typically: yield, crop quality) 
b) Soil quality & soil health 
c) Resource use efficiency (mainly: water, nutrients) 
d) Economic aspects 
e) Environmental impacts (mainly: losses of greenhouse gases, and leaching) 

These results were presented in the main text either as figures or tables. Here we present all data in the 
form of tables. As such, the tables of the main text are 1-to-1 copied here, and this gives a total 
overview of all data collected for these ten crop husbandry and soil management practices. All references 
provided can be found in the main text, and are not repeated here. Note that the data shown in the 
figures of the main text all refer to quantitative effect sizes; data provided here in the tables also include 
a few qualitative results as mentioned by the referenced studies. 
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1. Crop type & crop rotations, including intercropping, cover crops and perennial crops 
 

Table 1. Cropping: effects on (a) crop yield and quality, (b) soil quality, (c) economic effects, (d) 
resource use efficiency, (e) environmental effects, and (f) human health impacts as reported in 
meta-analysis studies; aoi = area of interest. 

Parameter aoi Management Result 
Crop type & crop 
rotation 

   

Relative yield cereals a Crop rotation vs none +5.99% [a] 
Yield effect cereals (Mg 
ha-1), temperate sites 

a Legumes as pre-crops, no N fertilization Broad leaved pre-crop 
(+1.4), oats (+1.5), cereal 
(2.2) [b] 

 a Legumes as pre-crops, 20-90 kg N ha-1 
fertilization 

Broad leaved pre-crop 
(+0.22), oats (+0.53), 
cereal (+0.7) [b] 

 a Legumes as pre-crops, 100-200 kg N ha-1 
fertilization 

Broad leaved pre-crop 
(-0.09), oats (+0.15), 
cereal (+1.47) [b] 

Yield effect (Mg ha-1) a Legumes as pre-crops for rapeseed +0.59 [b] 
Yield effect (Mg ha-1)  a Legumes as pre-crops for cereals on 

editerranean sites 
Broad leaved pre-crop 
(+0.85), oats (+0.67), 
cereal (-0.16) [b] 

Yield effect wheat (Mg 
ha-1) 

a Pre-crops vs wheat  Barley (+0.16 ns), oats 
(+0.53), canola (+0.8), 
mustard/canola (+0.57), 
flax/canola (+1.26), all 
legumes (+0.92), fallow 
(+1.12), break crops 
(+0.75) [c] 

yield a Crop rotation vs continuous monoculture +20% [z] 
Soil organic C b Rotation versus monoculture +20 g C m2 yr-1 [d] 
SMB, SMN, PLFA, 
dehydrogenase, 
metabolic quotient, 
protease activity, 
urease activity 

b Organic vs conventional 41, 51, 59,  
74,  
ns, 
84,  
32% [ad] 

Soil organic C, N (%) b Rotation vs monoculture +3.6%C, +5.3% N [e] 
Soil microbial C, N (%) b Rotation vs monoculture +20.7%, 26.1% N [e] 
Soil microbial diversity, 
richness (%) 

b Rotation vs monoculture +3.36%, 15.11% [f] 

Number of financial 
competitive over total 
number  

d Legumes as pre-crops 35 out of 53 [b] 

% Increase in GHG e Rotation vs monoculture +41% in CO2 eq. per 
biomass, +46% in kg CO2 
eq. ha-1 yr-1 [g] 

Intercropping    
Yield of OA* a Intercropping cereal and legume  +30% [h] 
Relative yield a Intercropping cereal and legume  17% ns [i] 
Yield as land use 
efficiency (LER) 

a Intercropping with and without maize 1.29, 1.16 [j]  

N fertilizer equivalent 
ratio (NFER) 

c Intercropping with and without maize 1.33, 1.19 [j] 

LER (yield),  
FNER 

a 
c 

Intercropping maize and soybean vs mono 1.32 ± 0.02 [ac] 
1.44 ± 0.03 [ac] 

Density of specialist 
herbivorous insects, 
generalist herbivorous 
insects, predator 
insects 

e Diversified vs monoculture -0.1, 0.05 ns, 0.24 [k] 

Density herbivorous 
insects 

e Diversified vs monoculture -60% [l] 

Plant disease incidence e Intercropping cereals with faba bean vs no 
intercropping 

-45% [u]  
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Cover crops    
Increase maize yield a Grass, legume or biculture winter cover 

crop vs fallow before maize in North 
America  

0% ns, +37%, +21% [m]  

Crop yield a Non-legume, leguminous cover crop vs 
fallow in winter 

-3%, 6% [p] 

Soil organic C b Cover crops versus fallow in winter +0.32 Mg C ha-1 yr-1 [n] 
Food crop yield 
 
Soil nitrate leaching 

a  
 
e 

non-legumes, legumes resp. as winter 
cover crops in Mediterranean vs no winter 
cover 

-7%, 16% [ab] 
 
-53%, ns [ab]  

SOM, SMB, soil N, soil 
water content, food 
crop damage, weed 
abundance, weed 
diversity 

b Winter cover crops in Mediterranean vs no 
winter cover  

+9%, +41 -22, -13, 
ns, -27, -13% [ab] 

SOC b cover crops +6%[ae] 
Soil infiltration rate b Cover crops vs none 34.8% [af] 
cash crop yield a Cover crops vs none 6% [aa] 
soil aggregate stability, 
leaching, infiltration, 
MBN, soil BD, SOC, soil 
nitrogen, MBN, 
saturated hydraulic 
conductivity 

b  13, -62, 74, 27, -1, 9, ns, 
26, 133% [aa] 

erosion, runoff, weed 
suppression 

e  -75, -73, -45 [aa] 

AM colonization cash 
crop roots 

b Cover crops versus fallow +28.5% [o] 

Nitrate leaching e Non-legume cover crop vs bare: in Nordic 
countries [16], global (17, 23], and 
irrigated systems [18] 

-50% [p], -70% [q],  
-56% [w], -50% [r] 

Ratio GHG’s e Cover crops vs fallow  +46% CO2, +49% N2O [v],  
N2O emission in grain 
crops 

e Cover crops vs fallow, whole-year, only 
cover crops period 

ns [x], -58% N2O [x] 

Ratio nematode 
abundance 

e Cover crops vs fallow +29% [v] 

Weed biomass e Cover crops vs none in corn-soybean 
rotation in U.S. Midwest 

-75% [y] 

Perennial crops     
Soil organic C b Cover crops vs bare between vines; olive 

trees  
+0.78; 1.1 Mg C ha-1 yr-1 
[s] 

Soil organic C b Miscanthus vs control without +0.40 Mg C ha-1 yr-1 [t] 
% Decrease in GHG e Perennial vs monoculture -168% in CO2 eq. per 

biomass, -215% in kg CO2 
eq. ha-1 yr-1 [g] 

[a] (Van den Putte, Govers, Diels, Gillijns, & Demuzere, 2010); [b] (Preissel, Reckling, Schläfke, & Zander, 
2015) [c] (Angus et al., 2015); [d] (West & Post, 2002); [e] (McDaniel, Tiemann, & Grandy, 2014); [f] 

(Venter, Jacobs, & Hawkins, 2016); [g] (Sainju, 2016); [h] (Bedoussac et al., 2015); [i] (Y. Yu, Stomph, 
Makowski, Zhang, & van der Werf, 2016); [j] (C. Li et al., 2020); [k] (Dassou & Tixier, 2016); [l] (Tonhasca 
Jr & Byrne, 1994),[m] (Miguez & Bollero, 2005); [n] (Poeplau & Don, 2015); [o] (Timothy M. Bowles, Louise 
E. Jackson, Malina Loeher, & Timothy R. Cavagnaro, 2016); [p] (Valkama, Lemola, Känkänen, & Turtola, 
2015); [q] (Tonitto, David, & Drinkwater, 2006); [r] (Quemada, Baranski, Nobel-de Lange, Vallejo, & 
Cooper, 2013); [s] (Vicente-Vicente, García-Ruiz, Francaviglia, Aguilera, & Smith, 2016); [t] (Poeplau & 
Don, 2014); [u] (C. Zhang et al., 2019) [v] (Daryanto, Wang, & Jacinthe, 2017); [w] (Thapa, Mirsky, & 
Tully, 2018); [x] (Han, Walter, & Drinkwater, 2017); [y](Nichols et al., 2020); [z] (J. Zhao et al., 2020); [aa] 

(J. Jian, Lester, Du, Reiter, & Stewart, 2020); [ab] (Shackelford, Kelsey, & Dicks, 2019); [ac] (Z. Xu et al., 
2020); [ad] (Lori, Symnaczik, Mäder, De Deyn, & Gattinger, 2017); [ae] (Bai et al., 2019b); [af] (Basche & 
DeLonge, 2019). 

* OA: organic agriculture 
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 2. Nutrient management 
 

Table 2. Nutrient management: effects on (a) crop yield and quality, (b) soil quality, (c) economic 
effects, (d) resource use efficiency, (e) environmental effects, and (f) human health impacts as reported 
in meta-analysis studies; aoi = area of interest. 

Parameter aio Management Result 
Yield  a Organic fertiliser in Mediterranean 

fruit orchards 
Increase in 67% of studies 
ns [a]  

Yield maize a Split application of N fertiliser vs 
early 

 -2.01% ns [b] 

Yield a Fertilizer placement vs broadcast +3.7% [o] 
Yield  a animal manure vs mineral:  

-in wheat, sugar beet, barley 
-in potatoes 
-in maize 
-all crops 

 
n.s. [c] 
+7% ±4.9 [c] 
+4% ±3.7 [c] 
ns [c] 

Yield a Organic manure vs mineral: Wheat, 
Rice, Millet, Maize, barley 

+27% [d] 

Yield  a Lime: CaO, CaCO3, Ca(OH2, 
CaMg(CO3)2 

+13.2, 34.3, 29.2, 66.5% 
[e] 

Yield, WP, NUE maize a Optimal vs non-optimal water and N 
supply 

27.9%, 27.9%, 20.5% [i] 

Increase N uptake a Urease, nitrification, and combined 
inhibitors 

+24.1%, +10.5%, +47.6% 
[j] 

% of studies: SOM b Organic fertiliser in Mediterranean 
fruit orchards 

Increase in 87% of studies 
[a] 

SOM, SMC* b Mineral N fertiliser 
Inorganic and organic N fertiliser 

+12.08%,+15.05% [g] 
+7.6%,-9.5 [h] 

SOM, SMC, EEA* b Organic manure vs mineral +38% +51%, +39% [d] 
Plant available water b Organic manure vs none -10 to + 30% [m] 
Maximum economic return  d N fertilisation for sugar beet (UK) 105 kg N ha-1 [f] 
Decrease of N loss e Urease, nitrification, and combined 

inhibitors 
-32.9, -14.5, -37.6% [j] 

NO emissions e Nitrification inhibitors -80% [n] 
Nitrate leaching, N2O 
emission 

e Biochar -13%, -38% [k] 

N2O emissions in grain 
crops 

e N fertiliser use according to 
recommendation vs higher N use 

-55% [l] 

NH3 emissions e Urease inhibitor,  
manure acidification 
deep placement 

- 24.3 to 68.7%  
-88.8 to 95.0%,  
-93.8 to 99.7% [p] 

Survival time zoonotic 
pathogens 

human Animal manure vs none +20% [q] 

Yield upland crop  
Yield rice 
NH3 emission factor 
N2O emission factor 

a 
a 
e 
e 

Partial and 100% substitution of 
mineral vs animal manure 
Manure N: upland, paddy soil 
Manure N: upland, paddy soil 

+6.6, -9.6% [r] 
+3.3%, -4.1% [r] 
0.56%, 0.17% [r] 
11.1%. 6.5% [r] 

Yield, pH, SWA*,  
SOC, TN, Nav, 
Pav, Kav, urease,  
sucrase, catalase, bateria, 
fungi, actinomyces, BD 

a 
 

Animal vs mineral fertilizer in China +7.6, 3.3, 28.8, 
17,7, 15.5, 16,  
66.2, 19.1, 23.5,  
18.3, 16.1, 60,  
27.7, 38, -3.9% [t] 

Relative yield increase of 
fruit crops 

a Application of N,P, or K fertilizer 78, 82.9, 82.4% [s] 

CBH activity, C-acq activity, 
AP activity, BX activity, BG 
activity, AG activity, urease 
activity, MBC, PEO activity, 
OX activity, PHO activity, 
SOC, TN, 

b N enrichment in farmland 6.4, 9.1, 10.6, 11, 11.2, 12, 
18.6, -9.5, -6.1, -7.9, -11.1, 
7.6 15.3% [u] 

Soil fungal diversity b Effect fertiliser:soil pH<6, soil pH>6 n.s, - H [v] 
Soil C, N, P, b grazing intensity; High vs low -4.3%, -9.9, +3.6%[w] 
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Corn yield a Sub-surface banded starter fertilizer 
application vs none in USA 

+5.2%[x] 

MBC, MBN 
β-1,4-glucosidase, 
dehydrogenase, urease, 
N-acetyl-β-glucosaminidase, 
alkaline phosphatase, acid 
phosphatase, sulfatase 

b Animal manure vs none +88, +84%[y] 
147,  
114, 39, 
112, 
58, 104,  
228% 

NH3 NOx CH4 CO2 emissions  e Slurry acidification vs raw -69, -21, -86, -15% [z] 
[a] (Morugán-Coronado, Linares, Gómez-López, Faz, & Zornoza, 2020); [b] (Fernandez, DeBruin, Messina, 
& Ciampitti, 2019); [c] (Hijbeek et al., 2017); [d] (G. Luo et al., 2018); [e] (Y. Li, Cui, Chang, & Zhang, 
2019); [f] (Jaggard, Qi, & Armstrong, 2009); [g] (Geisseler & Scow, 2014); [h] not used; [i] (Y. Li, Z. Li, et 
al., 2019); [j] (Sha et al., 2020); [k] (Borchard et al., 2019); [l] (Han et al., 2017); [m] (Eden, Gerke, & 
Houot, 2017); [n] (Liu et al., 2017); [o] (Nkebiwe, Weinmann, Bar-Tal, & Müller, 2016); [p] (Ti, Xia, Chang, 
& Yan, 2019); [q] (Tran et al., 2020); [r] (X. Zhang et al., 2020); [s] (W. Li et al., 2020); [t] (Y. Du et al., 
2020); [u] (S. Jian et al., 2016); [v] (Ye et al., 2020); [w] (M. He et al., 2020); [x] (Quinn, Lee, & 
Poffenbarger, 2020); [y] (S. Liu et al., 2020); [z] (Emmerling, Krein, & Junk, 2020).  

*SOM: soil organic matter, SMB: soil microbial carbon, EEA: soil extracellular enzyme activity 
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3. Irrigation + fertigation 
 

Table 3. Irrigation and fertigation: effects on (a) crop yield and quality, (b) soil quality, (c) economic 
effects, (d) resource use efficiency, (e) environmental effects, and (f) human health impacts as reported 
in meta-analysis studies; aoi = area of interest. DI = deficit irrigation, PRD = partial rootzone drying, FI 
= full irrigation, AI = aerated irrigation, NAI non-aerated irrigation, RDI = regulated deficit irrigation, 
CDI = conventional deficit irrigation, CI = conventional irrigation, OI = over-irrigation, UI = 
under-irrigation, OPTI = optimal irrigation. 

Parameter aoi Management Result 
Yield a DI or PRD vs FI 

AI vs NAI 
RDI vs FI 

-0.8 (standardized mean difference) 
[2]  
+30.4% [9] 

Yield, WUE* a,c AI vs NAI 
RDI vs FI 
DI vs FI 

+19.3%, +17.9% [4] 
-18.6 t ha-1, +2.3 kg m-3 [5] 
-16.2%, +6.6% [8] 

Yield, WP, NUE* of 
maize 

a OPTI vs OI 
OPTI vs UI 

+26.4%, +26.8% and +17.0% [12] 
+25.3%, +25.1% and +19.8% [12] 

Yield, WUE, NUE* 
citrus 

a,c OPTI vs OI 
OPTI vs UI 

+12.4%, +27.6%, +12.9% [6] 
+20.2%, +3.7%, +20.2% [6] 

Total soluble solids 
(fruit quality) 

a DI vs FI, PRD vs FI +4.1% to +5% [1]  
significant improvement [5] 

Vitamin C content 
fruits 

a RDI vs FI significant improvement [5] 

Water productivity c PRD vs CI  
CDI vs CI 
I vs non-I 

+83% [7] 
+76% [7] 
+9.9% [9] 

N2O emission factor e I  +0.5% [3] 
NH3, N2O emission, 
NO3 leaching 

e I vs non-I -9.3%, -42.3%, +36.1% [9] 

Soil respiration, 
SOC* 

b I vs non-I +9.7% [10], +1.27% ns [11] 

Yield a Micro irrigation vs furrow irrigation +36.7 (wheat), -21.4 (cotton) [a] 
ET = Water use c Micro irrigation vs furrow irrigation -22.7 (wheat), -36.8 (cotton) [a] 
Yield a Optimized water management vs 

continuous flooding (rice; China) 
<0 (severe soil water shortage) [b] 
+1 to +6% (mild water shortage) [b] 

WUE, WP c Optimized water management vs 
continuous flooding (rice; China) 

-40%, +34% [b] 

GHG e Optimized water management vs 
continuous flooding (rice; China) 

-37% (lower methane emission; lower 
energy consumption by irrigation 
system) [b] 

WUE c Furrow irrigation vs rainfed +14% (not significant) [c] 
WUE c Pivot irrigation vs rainfed +99% [c] 
WUE c Subsurface drip irrigation vs rainfed +147% [c] 
NUE (NPFP; yield 
per unit input) 

c Irrigation vs no irrigation +24% [d] 

Yield a Non-continuous flooding vs continuous 
flooding (rice) 

-3.6% [e] 

CH4, N2O e Non-continuous flooding vs continuous 
flooding (rice) 

-53%, +105% [e] 

GWP (CH4 + N2O); 
idem, yield-scaled 

e Non-continuous flooding vs continuous 
flooding (rice) 

-44%, -42% [e] 

Yield a Optimal irrigation vs farmer irrigation 
(maize) 

+6.5% [f] 

ET = Water use c Optimal irrigation vs farmer irrigation 
(maize) 

-10.9% [f] 

WP c Optimal irrigation vs farmer irrigation 
(maize) 

+18.1% [f] 

[1] (Adu et al., 2019); [2] (Adu, Yawson, Armah, Asare, & Frimpong, 2018); [3] (Cayuela et al., 2016); [4] 

(Y.-D. Du et al., 2018); [5] (J. Lu, Shao, Cui, Wang, & Keabetswe, 2019); [6] (Qin, Assinck, Heinen, & 
Oenema, 2016); [7] (Sadras, 2008); [8] (L. Yu, Zhao, Gao, & Siddique, 2020); [9] (H. Zheng et al., 2019); 

[10] (L. Zhou et al., 2016); [11] (X. Zhou et al., 2016); [12] (Y. Li, Z. Li, et al., 2019); [a] (Fan, Wang, & 
Nan, 2018); [b] (He, Wang, & Cui, 2020); [c] (Mitchell-McCallister, Cano, & West, 2020); [d] (B.-Y. Liu et 
al., 2020); [e] (Jiang et al., 2019); [f] (H. Zheng et al., 2020). 
* WUE: water use efficiency, WP: water productivity, NUE: nitrogen use efficiency, SOC: soil organic pool;  
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4. (Controlled) Drainage 
 

Table 4. Controlled drainage: effects on (a) crop yield and quality, (b) soil quality, (c) economic effects, 
(d) resource use efficiency, (e) environmental effects, and (f) human health impacts as reported in 
meta-analysis studies; aoi = area of interest (see Table 1). 

Parameter aoi Management Result 
Equal annual cost d Drainage vs none 9 to 37 $ ha-1 yr-1 [3] 
CH4 Emission from peat e Drainage vs none -84% [1] 
Drainage volume e Drainage vs none -47% [2]; -17% to -85% [4] 
N-load e Drainage vs none -41% [3]; -18% to -85% [4] 
Yield a Controlled drainage vs control 0.11 ns [a] 
Drain volume b Controlled drainage vs control -19.23% [a] 
NO3-N concentration; NO3-N loss b Controlled drainage vs control -19.07%; -36.11% [a] 
NH4-N concentration; NH4-N loss b Controlled drainage vs control +35.20%; -18.90% [a] 
Ntot concentration; Ntot loss b Controlled drainage vs control -0.59% ns; -31.80% [a] 
Ptot concentration; Ptot loss b Controlled drainage vs control +1.55% ns; -18.79% [a] 
    

[1] (Abdalla, Chivenge, Ciais, & Chaplot, 2016); [2] (Amenumey et al., 2009); [3] (Christianson, Tyndall, & 
Helmers, 2013); [4] (Skaggs, Youssef, Gilliam, & Evans, 2010); [a] (Z. Wang et al., 2020) 

 

 “A meta-analysis indicated that water management options, including single and multiple drainage 
approaches such as alternative wetting and drying (AWD), significantly reduced CH4 emissions by 35% 
as a mean effect size (95% confidential interval: 41-29%), as well as the combined effects of CH4+N2O 
(net GWP) by 29% (36-23%) (Yagi et al., 2019).” 

This is very specific for rice cropping systems where during the growing season every now and then the 
water level is lowered (drained). 
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5. Tillage 
 

(de Paul Obade & Lal, 2014): non-significant effects for SOC, EC, BD, pH and AWC in Central Ohio, USA; 
5 sites with conventional tillage, no-till and natural vegetation land uses. 

 

Table 5. Soil tillage: effects on (a) crop yield and quality, (b) soil quality, (c) economic effects, (d) 
resource use efficiency, (e) environmental effects, and (f) human health impacts as reported in 
meta-analysis studies; aoi = area of interest. NT = no-tillage, TT = traditional tillage, CA = conservation 
agriculture, RT = reduced tillage, MT = minimum tillage. 

Parameter a
oi 

Management result 

Yield a NT vs TT 0 [12, 19, 30, 32 ]   
NT vs TT -6% [23]; -5% [24, 27]    
NT vs TT (China) -2% without, +5% with residues [36]    
NT vs TT (Med.) 7% [13]; ns [31]   
NT vs TT (China) 10% [33 ]; 3% [35 ]  

Crop yield, weeds in organic 
farming 

a, 
e 

Shallow non-inversion vs TT  -7.6%, +50% [7] 

Costs ($ per t C)  d NT vs TT (North America) 10-400 [20] 
GWP* rice e NT vs TT (China) -20% [30]  
Yield, CH4 uptake, N2O, GHG 
emissions 

a, 
e 

NT vs TT annual wheat and 
maize. 

-3, +23, 0 ns, 0 ns% [34] NE China 

CH4, N2O e NT vs TT without residues -30%, +82% [37] in rice 
CO2, CH4, N2O, GHG e NT vs TT -9% ns, -15%, +10%, 0% [12] 
N2O emission, EFad

** e CA vs TT +18%,+0.40% [21] 
CO2 emissions e NT vs TT  -21% [1] 
P runoff e NT vs TT (dissolved, total, 

particulate) 
+35%, -45%, -55% [8] 

Herbicide loss runoff e NT vs TT ns [10]  
Pesticide runoff e NT vs TT +55%, +50% [28] 
WUE c NT vs TT (China) 6% [32 ]; 10% [33]  
AMF colonization  
AMF richness 

b Low-intensity tillage vs TT  +27%,  
+11% [5] 

Bacteria, fauna diversity b NT vs TT +8%, +21% [9] 
DOC b NT vs TT Increased [14] 
EOC b NT vs TT +17% [15] 
NO e NT vs TT -30% [17] 
C stock topsoil b NT vs TT 0 [18] 
Runoff e NT vs mouldboard ploughing -27% [25] 
SOC b RT and NT vs TT (Med.) -0,16, +0.85 Mg C ha-1 [11] 

+15%, +11.4% [2] 
SOC b NT vs TT 0 [26], >0 [1,3,7,31,38]  

 CA vs TT 5% [4]   
 NT vs TT (China) 3.8-5.1% [29]  

SOC, total N, water storage, 
K avail 

b NT vs TT (China) 10.2%, 9%, 9%, 11% [36] 

SOC, beta-gluco, micr. 
biomass C, dehydrog. 
activity 

b CA vs TT (Med.) 9%; 18%, 26%,30% [13] 

Pot. min. nitrogen b CA vs TT 13% [19] 
Worms abun, worms mass b NT vs TT  137%, 196% [6]   

RT vs TT 50%, 75% [6] 
  

 
NT vs TT 90%, 67% [22] 

P avail. b NT or MT vs TT (Med.) 0 [31] 
Total N b Idem 0 [31, NT], 9% [13]; >0 [31, MT] 
Soil physical parameters b NT vs TT BD 2% [3]; 1-3% [16], AWC 5-10%, 

Ksat 25%, MWD 52%, PR 37%, WSA 
55% [16] *** 

C seq. b Conservation agriculture vs 
conventional 

+16.3% [a] 

Water use c Conservation agriculture vs 
conventional 

significant less [a] 
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Costs and returns d Conservation agriculture vs 
conventional 

higher returns and lower costs [a] 

CO2, CH4 e Conservation agriculture vs 
conventional 

-4.3%, -25.7% [a] 

N2O, NO2 e Conservation agriculture vs 
conventional 

+5.2%, +14.5% [a] 

SOC b Conservation tillage vs 
conventional tillage 

+5% [b] 

SOC b No-tillage or reduced tillage 
tillage vs conventional 
tillage 

+8% [b] 

SOC b No-till vs mouldboard plough 
Chisel vs mouldboard plough 
Perennial vs mouldboard 
plough 

+38% 
+14% 
+95% [c]; 0-15 cm depth 

MBC, MBN, Resp. b No-till vs mouldboard plough 
Chisel vs mouldboard plough 
Perennial vs mouldboard 
plough 

+34%, +21%, +49% 
 
+34%, +37% (ns), +8% (ns) 
 
+131%, +206%, +92% [c]; 0-15 cm 
depth 

Prot, AC, BG b No-till vs mouldboard plough 
Chisel vs mouldboard plough 
Perennial vs mouldboard 
plough 

+49%, +37%, +55% 
 
3* no data 
 
+92%, +225%, +61% [c]; 0-15 cm 
depth 

N-losses1 e Conservation tillage vs 
traditional tillage 

-39.9% [d] 

N-losses1 e No-till vs traditional tillage -63.7% [d] 
N-losses1 e Mulch-tillage vs traditional 

tillage 
-25.6% (ns) [d] 

SOC b No-till vs traditional tillage +20.9% [e] 
pH b No-till vs traditional tillage 0% [e] 
N total b No-till vs traditional tillage +27.1% [e] 
Microbial community b No-till vs traditional tillage +3.0% [e] 
Bacterial community b No-till vs traditional tillage +5.5% [e] 
Fungal community b No-till vs traditional tillage 0% [e] 
Microbial biomass b Conservation tillage (NT, 

RT) vs traditional tillage 
+37% [f]  
(ns in sandy soils) 

Fungal biomass b Conservation tillage (NT, 
RT) vs traditional tillage 

+31% [f] 
(ns in sandy soils) 

Bacterial biomass b Conservation tillage (NT, 
RT) vs traditional tillage 

+11% [f] 
(ns in sandy soils) 

SOC b Conservation tillage (NT, 
RT) vs traditional tillage 

+22% [f] 

N tot b Conservation tillage (NT, 
RT) vs traditional tillage 

+22% [f] 

Insect and slug pests b Reduced tillage vs traditional 
tillage 

ns [g] 

Arthropod predators b Reduced tillage vs traditional 
tillage 

ns [g] 

Runoff b Minimum soil disturbance vs 
conventional tillage (China) 

-36.1% [h] 

Sediment yield b Minimum soil disturbance vs 
conventional tillage (China) 

-51.7% [h] 

Bacterial count b Reduced tillage vs traditional 
tillage 

0% [i] 

Fungal count b Reduced tillage vs traditional 
tillage 

+16% (ns) [i] 

Bacterial count b No-till vs traditional tillage +14% [i] 
Fungal count b No-till vs traditional tillage +58% (ns) [i] 
MWD (0-5 cm) b No-till vs traditional tillage +57.9% [j] 
Field capacity (0-5 cm) b No-till vs traditional tillage +15.5% [j] 
Dry bulk density (5-10 cm) b No-till vs traditional tillage +4.7 (ns) [j] 
Infiltration rate b No-till vs traditional tillage +66% [j] 
SOC - total b No-till vs traditional tillage +1.1% (ns) [j] 
SOC (0-5 cm) b No-till vs traditional tillage +37.9% [j] 
Lrv (0-5 cm) b No-till vs traditional tillage +34.7% [j] 
Lrv (other depths) b No-till vs traditional tillage ns [j] 
Yield a Occasional tillage vs no-till ns [k] 
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Yield a Occasional subsoiler tillage 
vs no-till 

+36% [k] 

Dry bulk density b Occasional tillage vs no-till -6.9% [k] 
Penetration resistance b Occasional tillage vs no-till -54.8% [k] 
Macroporosity b Occasional tillage vs no-till +45.4% [k] 
Total porosity b Occasional tillage vs no-till +10.6% [k] 
SOC b Occasional tillage vs no-till -4.7% [k] 
Aggregate size (> 2 mm) b Occasional tillage vs no-till -12.5% [k] 
MWD b Occasional tillage vs no-till -10.7% [k] 
pH b Occasional tillage vs no-till ns [k] 
P avail. b Occasional tillage vs no-till ns [k] 
MBC b Occasional tillage vs no-till +21.2% [k] 
Total microbial activity 
(TMA) 

b Occasional tillage vs no-till ns [k] 

Infiltration b Occasional tillage vs no-till +120% [k] 
Mulch cover b Occasional tillage vs no-till -40.4% [k] 
Runoff b Occasional tillage vs no-till -26.1% [k] 
Weeds a Occasional tillage vs no-till -70% [k] 
Runoff b Contour tillage vs traditional 

tillage (China) 
-35.86% [l] 

Sediment transport b Contour tillage vs traditional 
tillage (China) 

-49.02% [l] 

SOC b No-till vs traditional tillage Decreasing from ~10-15% to 0% with 
increasing humidity index (HI = mean 
annual precipitation divided by mean 
annual temperature) [m] 

Yield a No-till vs traditional tillage Decreasing from 0% with increasing 
humidity index (HI = mean annual 
precipitation divided by mean annual 
temperature), strongly linearly related 
with SOC [m] 

Yield a Minimum tillage vs 
traditional tillage (fruit, 
Med.) 

-8.3% ns [n] 

Yield a No-till vs traditional tillage 
(fruit, Med.) 

+1.7% ns [n] 

SOC b Minimum tillage vs 
traditional tillage (fruit, 
Med.) 

+44.5% [n] 

SOC b No-till vs traditional tillage 
(fruit, Med.) 

+38.3% [n] 

C seq. b Minimum tillage vs 
traditional tillage (fruit, 
Med.) 

1.51 Mg C ha-1 year-1, ns [n] 

C seq. b No-till vs traditional tillage 
(fruit, Med.) 

1.39 Mg C ha-1 year-1, ns [n] 

N tot. b Minimum tillage vs 
traditional tillage (fruit, 
Med.) 

+34.4% [n] 

N tot. b No-till vs traditional tillage 
(fruit, Med.) 

+26.4% ns [n] 

P avail. b Minimum tillage vs 
traditional tillage (fruit, 
Med.) 

+5.0% ns [n] 

P avail. b No-till vs traditional tillage 
(fruit, Med.) 

+1.6% ns [n] 

Yield (wheat) a Subsoiling vs traditional 
tillage (N. China) 

+16.3% [o] 

Yield (maize) a Subsoiling vs traditional 
tillage (N. China) 

+9.2% [o] 

Water consumption (wheat) c Subsoiling vs traditional 
tillage (N. China) 

+8.4% [o] 

Water consumption (maize) c Subsoiling vs traditional 
tillage (N. China) 

+1.8% [o] 

Bulk density b No-till vs traditional tillage +2.3% [p] 
Penetration resistance b No-till vs traditional tillage +27.8% [p] 
pH b No-till vs traditional tillage -1.8% [p] 
MWD b No-till vs traditional tillage +50% [p] 
WSA b No-till vs traditional tillage +36% [p] 
Ksat b No-till vs traditional tillage 0% [p] 
AWC b No-till vs traditional tillage +8.7% [p] 
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Yield (maize) a Ridge-furrow cultivation vs 
control 

47% [q] 

WUE, ET c Ridge-furrow cultivation vs 
control 

39%, 0 [q] 

[1] (Abdalla et al., 2016); [2] (Aguilera, Lassaletta, Gattinger, & Gimeno, 2013); [3] (Angers & Eriksen-
Hamel, 2008); [4] (Bai et al., 2019b); [5] (T. M. Bowles, L. E. Jackson, M. Loeher, & T. R. Cavagnaro, 
2016); [6] (Briones & Schmidt, 2017); [7] (Cooper et al., 2014); [8] (Daryanto et al., 2017); [9] (de Graaff, 
Hornslein, Throop, Kardol, & van Diepen, 2019); [10] (Elias, Wang, & Jacinthe, 2018); [11] (González-
Sánchez, Ordóñez-Fernández, Carbonell-Bojollo, Veroz-González, & Gil-Ribes, 2012); [12] (Huang et al., 
2018); [13] (Lee et al., 2019); [14] (M. Li, Wang, Guo, Yang, & Fu, 2019); [15] (S. Li et al., 2018); [16] (Y. 
Li, Li, Cui, Jagadamma, & Zhang, 2019); [17] not used; [18] (Z. Luo, Wang, & Sun, 2010); [19] (Mahal, 
Castellano, & Miguez, 2018); [20] (Manley, Van Kooten, Moeltner, & Johnson, 2005); [21] (Mei et al., 
2018); [22] (Moos, Schrader, & Paulsen, 2017); [23] (C. M. Pittelkow et al., 2015); [24] (Cameron M. 
Pittelkow et al., 2015); [25] (Y. Sun, Zeng, Shi, Pan, & Huang, 2015); [26] (Ugarte, Kwon, Andrews, & 
Wander, 2014); [27] (Van den Putte et al., 2010); [28] (Velthof); [29] (Z. Du, Angers, Ren, Zhang, & Li, 
2017); [30] (Feng et al., 2013); [31] (Morugán-Coronado et al., 2020); [32] (Wang, Zhang, Zhou, & Wang, 
2018); [33] (Wei et al., 2017); [34](C. Xu et al., 2017); [35] (Yin et al., 2018); [36] (Zhao et al., 2017); [37] 

(Zhao et al., 2016); [38] (Zhao et al., 2015); [a] (Kiran Kumara, Kandpal, & Pal, 2020); [b] (Bai et al., 
2019a); [c] (Nunes, Karlen, Veum, Moorman, & Cambardella, 2020) their Table 2; [d] (Y. Zhang, Xie, Ni, & 
Zeng, 2020); [e] (Yüze Li et al., 2020); [f] (H. Chen et al., 2020); [g] (Rowen, Regan, Barbercheck, & 
Tooker, 2020); [h] (Jia et al., 2019); [i] (Y. Li, Zhang, Cai, Yang, & Chang, 2020); [j] (Mondal, Chakraborty, 
Bandyopadhyay, Aggarwal, & Rana, 2020); [k] (Peixoto et al., 2020); [l] (Jia, Zhao, Zhai, An, & Pereira, 
2020); [m] (W. Sun et al., 2020); [n] (Morugán-Coronado et al., 2020); [o] (J. Wang et al., 2020); [p] (Y. Li, 
Li, Cui, & Zhang, 2020); [q] (Y. Wang et al., 2020) 

1: N-losses: gaseous emission and leaching; * GWP: yield-scaled global warming potential (CH4 and N2O emissions per unit rice 
yield), ** EFad: additional N2O emission factor, which is the conservation tillage-induced change in N2O emission compared to 
conventional tillage when N fertilizer is applied.*** BD: bul density, AWC: available water content, Ksat: saturated hydraulic 
conductivity, MWD: mean weight diameter, PR: penetration resistance of soil, WSA: water stable aggregates. MBC = microbial 
biomass c; MBN = microbial biomass N; Resp = soil respiration; Prot = soil protein; AC = active carbon; BG = 
beta-glucosidase, WSA = water stable aggregates, AWC = available water content, MWD = mean weight diameter 

  



 
Supplemental Information; Rietra et al. 2022  12 

6. Pest management 
 

Table 6. Pest management: effects on (a) crop yield and quality, (b) soil quality, (c) economic effects, 
(d) resource use efficiency, (e) environmental effects, and (f) human health impacts as reported in 
meta-analysis studies; aoi = area of interest. 

Parameter aoi Management Result 
Yield a Effect of biofumigation Abs. diff.: 29% [a] 
Yield a Anaerobic soil disinfestation Abs. diff.: 30% [b] 
Suppression of pathogens a Anaerobic soil disinfestation Abs. diff.: 70% [b] 
Yield a Organic / conventional Ratio: 0.83 [c] 
Disease severity response by 
fungal plant pathogens 

b Fertilized vs unfertilized increase 0.3±0.1 [d] 

Nr studies with insect population b Fertilisation Increase/decrease 175/78 [e] 
Nr studies with pest population b Organic /non-organic Increase/decrease 42/26e[f] 
Pest infestation; weed 
Pest infestation; Animal pest  
Pest infestation; pathogen 

e Organic vs conventional - hedge’s d=1.02± 0.22 [g] 
ns [g] 
- hedge’s d=0.38± 0.23 [g] 

[a] (Morris, Fletcher, & Veresoglou, 2019); [b] (Shrestha, Augé, & Butler, 2016) [c] (Lesur-Dumoulin, 
Malézieux, Ben-Ari, Langlais, & Makowski, 2017); [d] (Veresoglou, Barto, Menexes, & Rillig, 2013) [e] 

(Butler, Garratt, & Leather, 2012); [f] (Garratt, Wright, & Leather, 2011); [g] (Muneret et al., 2018). 
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7. Weed management 
 

Table 7. Weed management: effects on (a) crop yield and quality, (b) soil quality, (c) economic effects, 
(d) resource use efficiency, (e) environmental effects, and (f) human health impacts as reported in 
meta-analysis studies; aoi = area of interest. 

Parameter aoi Management Result 
weed biomass a Legume intercropping vs 

conventional, both non-weeded 
and weeded  

-56%, -42% [a] 

Weed density, biomass 
parasitic nematodes 

a Cover crops vs TT -10%, -5%, +29% [b] 

Number of studies with 
increase soil organic matter 

b Reduced tillage/Tillage +40 and -7 out of 78 studies [c] 

Soil microbial respiration 
Soil microbial biomass 

b Glyphosate vs no use, <10 mg kg  
Glyphosate vs no use, >10 mg kg 

Log RR: 0.064±0.126 [d] 
Log RR: 0.04±0.09 [d] 

[a] (Verret et al., 2017); [b] (Daryanto et al., 2017); [c] (Govaerts et al., 2009); [d], (Nguyen, Rose, Rose, 
Morris, & Van Zwieten, 2016). 

*OA: organic agriculture 

 

  



 
Supplemental Information; Rietra et al. 2022  14 

8. Crop residue management & mulching 
 

Table 8. Crop residue management & mulching: effects on (a) crop yield and quality, (b) soil quality, (c) 
economic effects, (d) resource use efficiency, (e) environmental effects, and (f) human health impacts as 
reported in meta-analysis studies; aoi = area of interest.  

Parameter aoi Management Result 
Yield, rotation a Residue vs control, overall +1% ns,  
Yield, no rotation a Residue vs control, overall, maize +2% ns, 20% [f] 
C microbial biomass b Amendment vs control +36% [a] 
N2O emission factor e Amendment vs control 0.5±0.3% [b] 
N2O release e Residue vs control (both include mineral fertilizer) 

Residue vs control (both without mineral fertilizer) 
Residue vs control (both upland soil) 

-11.7% [c] 
41.1% [c] 
23.5% [c] 

N2O release e Residue vs control sign. [d] 
N2O release e Residue vs control  +11% [e]  

e Residue with C/N<25 vs control +76% [e] 
yield a Mulching plastic or straw in wheat vs conv 20%; 20% [g] 
yield a Mulching plastic or straw in potato vs conv 61%; 20% [g] 
NUE* c Mulching plastic or straw in wheat vs conv 20%; 20% [g] 
NUE* c Mulching plastic or straw in maize vs conv 60%; 21% [g] 
WUE** c Mulching plastic or straw in maize vs conv 20%; 20% [g] 
WUE ** c Mulching plastic or straw in potato vs conv 59%; 21% [g] 
Yield 
WUE 

a 
c 

Mulching plastic or straw in maize vs conv 29.4%; 12.02% [s] 
29.45%; 11.43% [s] 

Yield, WUE a,c Degradable film mulching vs none +17%,+21%[h] 
Yield, WUE a,c Crop residue vs none +5%, + 14.8 [l] 
Yield 
soil temperature 

a,b Degradable vs polyethylene mulching ns [p] 
-4.5% [p] 

Yield, WUE a,c Degradable vs polyethylene mulching -3%, -3% [h]  
yield a degradable vs polyethylene mulch Ns. [q] 
Yield wheat, maize a Mulching in NE China +14.9 ± 2.9%, 

+17.7 ± 6.2% [k] 
Yield, water use, 
WP 

a, 
c 

Plastic film mulching in NE China vs none 
Straw re-incorporation vs none 

+14, -2.8, +17.4% [m] 
+8.5, -4.1, +12.6%[m] 

Yield 
Economic return  
N footprint* 

a 
d 
e 

Plastic mulching in potato, maize, wheat in China  25, 27, 20%[j] 
19, 29, 22% [j] 
19, 37, 19% [j] 

Grain yield maize a Plastic film mulching in loess plateau China +56.1% [k] 
Yield potato 
WUE  

a, 
c 

Mulching plastic or straw in China vs conv 24.3%, 16% [r] 
287%, 5.6% [r] 

SOC storage CH4 
emission 

b,e Plastic mulching + 0.0102 Mg C ha-1y-1 [i] 
- 0.25 kg C ha-1 y-1 [i] 

Yield 
SOC,  
CO2, CH4, N2O 

a 
b 
e 

Crop residue retention vs none +7.8%[n] 
12-36.8% [n] 
+31.7, +130.9, +12.2% [n] 

Soil C:N,  
Soil C:P  
soil N:P 

b Living mulch in tree orchards in China n.s. [o] 
12% [o]  
10% [o] 

Yield  
CO2 emissions 

a,e Optimal mulching & conservation (clean) vs 
conventional for whole China 

+6.89% [q] 
-75% [q] 

[a] (Kallenbach & Grandy, 2011); [b] (Charles et al., 2017); [c] (Shan & Yan, 2013); [d] (Chen, Li, Hu, & 
Shi, 2013); [e] (Essich, Nkebiwe, Schneider, & Ruser, 2020); [f] (Cameron M. Pittelkow et al., 2015); [g] 

(Qin, Hu, & Oenema, 2015); [h] (Gu et al., 2020); [i] (Mo et al., 2020); [j] (L. Wang et al., 2020); [k] (N. 
Wang et al., 2020); [l] (X. Lu, 2020); [m] (H. Zheng et al., 2020); [n] (X. Zhao et al., 2020); [o] (G. Chen et 
al., 2020); [p] (Tofanelli & Wortman, 2020); [q] (Xiao, Zhao, & Zhang, 2020); [r] (Q. Li, Li, Zhang, Zhang, 
& Chen, 2018); [s] (Gao et al., 2019).  

*NUE: yield per unit of N **WUE: yield per unit of water 
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9. Mechanization & technology 
No meta-analysis studies/reviews found: no data (no table; no figure).  

Parameter aoi Management Result 
Dry bulk density b After trafficking versus 

before trafficking (forest 
soils) 

0-10 cm: for 98 studies; 76 showed increase, 22 
showed decrease; 26 showed increase > 15% [a] 
 
10-20 cm: for 102 studies; 76 showed increase, 26 
showed decrease; 13 showed increase > 15% [a] 
 
20-30 cm: for 88 studies; 57 showed increase, 31 
showed decrease; 3 showed increase > 15% [a] 
 

Labour input: 
preparation, 
weeding, total 

d Planting basins vs 
conventional tillage 

+702%, +35%, +81 [b] 

Labour input: 
preparation, 
weeding, total 

d Ridged systems vs 
conventional tillage 

+19%, -44%, +9% [b] 

Labour input: 
preparation, 
weeding, total 

d No-till vs conventional 
tillage 

-83%, -90%, -25% [b] 

Change in yield 
relative to change 
in labour 

a/d Planting basins vs 
conventional tillage 

0.16 (preparation),  
0.66 (weeding)  
no data (total) [b] 

Change in yield 
relative to change 
in labour 

a/d Ridged systems vs 
conventional tillage 

2.0 (preparation),  
3.4 (weeding),  
2.2 (total) [b] 

Change in yield 
relative to change 
in labour 

a/d No-till vs conventional 
tillage 

With herbicides: 
1.7 (preparation),  
2.6 (weeding),  
1.8 (total) [b] 
Manual weeding only: 
3.3 (preparation),  
0.6 (weeding),  
0.9 (total) [b] 

[a] (Ampoorter, de Schrijver, van Nevel, Hermy, & Verheyen, 2012); [b] (Dahlin & Rusinamhodzi, 2019) 
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10. Landscape management 
 

Table 9. Landscape management: effects on (a) crop yield and quality, (b) soil quality, (c) economic 
effects, (d) resource use efficiency, (e) environmental effects, and (f) human health impacts as reported 
in meta-analysis studies; aoi = area of interest.  

Parameter aoi Management Result 
Crop yield increase a Wind breaks Spring wheat +8%, winter wheat +23%, barley 

+25%, oats +6%, rye +19%, millet +44%, corn 
+12%, alfalfa +99%, hay +20% [a] 

Crop yield a Hedgerows vs control; 
next to hedge until 
twice the height; 
beyond twice the height 
until 20 times the 
height 

-29%, +6% [b]  

Soil organic matter 
in crop field 

b Hedgerows vs control 
 

6% [b]  
 

Interception of N, P, 
suspended solids 
from soil surface 
flow 

e Hedgerows  
 
Grass strips  

69%,67%, 91%[b] 
  
67%, 73%, 90% [b] 

Crop yield a Hedge rows, Flower 
strips vs none 

Ns [c] 

Pest control e Hedge rows, Flower 
strips vs none 

ns, -16% [c] 

Pollination e Hedge rows, Flower 
strips vs none 

ns [c] 

Abundance, 
richness of 
pollinators in crop 

e Flower strips vs none ns, ns [d] 

Pollinator species 
richness 

e effect of 
Agri-environment 
management in 
intensive land use, 
landscape: 
Small, simple 
Small, complex 
Large, simple 
Large, complex 

 
 
Hedge’s d: 
 
 
sign. [f] 
ns [f] 
sign. [f] 
Sign. [f] 

Soil SOM, total N, 
total P, alkali N, 
available P, readily 
available K,  
total K 

b hedge rows vs none Hedge’s d sign. [c] 
 
 
 
Hedge’s d ns [c] 

[a] (Kort, 1988); [b] (Van Vooren et al., 2017); [c] (Albrecht et al., 2020); [d] (Zamorano, Bartomeus, Grez, 
& Garibaldi, 2020); [e] (Y. Zheng, Wang, Qin, & Wang, 2020); [f] (Marja et al., 2019). 
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Brief description Excel file 
 

While collecting the data, additional meta-information was summarized in an Excel table, which is 
available as a separate document (LINK). In that table additional information can be found of 
non-meta-analysis studies as well. The meta-information that was collected (as far as provided by the 
original studies) is given in Table 10. 

 

Table 10. Explanation of the main columns in the accompanying Excel-sheet. 

Column header Explanation 
SICS impact on Impact on either a) Agronomic effects, b) Soil quality & soil health, c) 

Resource use efficiency, d) Economic aspects, or e) Environmental 
impacts. 

Reference Reference. 
Country Indication whether the data refer to a global analysis or more specifically 

to a smaller region or country. 
Type of study Meta-analysis, review, review (single study), single study. 
Short description Brief description of the contents of the study. 
Parameter Name of variable for which the effect size is provided. 
Crop Name of crop studied (if provided). 
Soil Soil type (not always available). 
Year(s) Years from which data were collected. 
Depth Soil depth to which variable refers to (if provided). 
Control_description Description of control treatment. 
Treatment_description Description of the treatment under investigation. 
Unit Unit of the variable. 
Control_data Quantity of the variable for the control treatment. 
Treatment_data Quantity of the variable for the treatment under investigation. 
Absolute difference Treatment_data - Control_data 
Factor Treatment_data / Control_data 
Relative change Treatment_data / Control_data - 1 
L LN( Treatment_data / Control_data ) 
Significant according to authors Indication if authors provided information on significance of their findings. 

 

In some cases only the final relative effect size (Factor, Relative change or L) was provided. In other 
cases only the absolute values for control and treatment were given, from which we calculated the 
relative effect size information. In rare cases only the absolute difference (without reference) was given, 
so that no relative effect size could be computed. For a few studies this Excel sheet contains, besides the 
reported main effects, also effects split in sub-effects; for example, effects split for arid versus humid 
regions, effects split for different soil types, or effects split for different crops. It goes beyond the scope 
of our study to provide all full details of the underlying meta-analysis studies.  
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