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                                 (a)                                                                               (b) 
Figure S1. Images showing low inter-class and high intra-class variabilities: (a) images of the Depuy manufacturer showing a high 
intra-class variance, and (b) low inter-class variabilities. In (b), the cases of four manufacturers: Zimmer, Tornier, Depuy, and Cofield 
are shown in the top left, top right, bottom left, and bottom right images, respectively. 

 

Table S1. Tabular description of rotational invariant augmentation (RIA) [20] training, validation, and testing data for ten-fold 
cross-validation (unit: images). 

Fold # RIA-Training Validation Testing 
1 19,906 12 47 
2 19,832 12 49 
3 19,906 12 47 
4 19,869 12 48 
5 19,943 12 46 
6 19,832 13 48 
7 19,869 12 48 
8 19,906 12 47 
9 19,832 12 49 

10 19,906 12 47 



 
Figure S2. Architecture of the proposed framework (IMFC-Net). 

 

Table S2. Detailed layer-wise architecture of the proposed IFC-Net. 

Layer Name # Iterations Input Size  Output Size Filter Size # Parameters 
Input 1 - 299 × 299 × 3 - 0 

Conv 3 299 × 299 × 3 147 × 147 × 64 3 × 3 3 × 3 3 × 3 28,896 

Max Pooling 1 147 × 147 × 64 73 × 73 × 64 3 × 3 0 
Conv 1 73 × 73 × 64 73 × 73 × 80 1 × 1 5,360 
Conv 1 73 × 73 × 80 71 × 71 × 192 3 × 3 138,816 

Max Pooling 1 71 × 71 × 192 35 × 35 × 192 3 × 3 0 

Block A 3 35 × 35 × 192 35 × 35 × 288  1 × 1 1 × 1  
819,984 1 × 1 5 × 5 3 × 3 1 × 1 

  3 × 3  

Block B 1 35 × 35 × 288 17 × 17 × 768   1 × 1  
1,153,920  3 × 3 3 × 3  

  3 × 3  

Block C 4 17 × 17 × 768 17 × 17 × 768 
 1 × 1   

6,713,172 
 7 × 1 1 × 1  1 × 1 1× 7 1 × 7 1 × 1 
 7 × 1 7× 1  
 1 × 7   

Block D 1 17 × 17 × 768 8 × 8 × 1280  1 ×1 1 × 1  
1,699,584  3 × 3 1 × 7  

  7 × 1  

Block E 2 8 × 8 × 1280 8 × 8 × 2048  1 × 1 1 × 1  

11,127,936 
1 × 1 1 × 3 3 × 3 1 × 1 

 3 × 1 1 × 3  
  3 × 1  

Block CP 1 8 × 8 × 2048 1 × 1 × 64 8 × 8 1 × 1 6,758,614 

Total number of parameters : 28,446,282 
 



Table S3. Detail layer-wise architecture of the proposed MFC-Net. 

Layer Name # Iterations Input Size  Output Size Filter Size # Parameters 
Input 1 - 224 × 224 × 3 - 0 

Conv-1 1 224 × 224 × 3 112 × 112 × 32 3 × 3 960 
DW-Conv 1 112 × 112 × 32 112 × 112 × 32 3 × 3 384 

Conv-2 1 112 × 112 × 32 112 × 112 × 16 1 × 1 560 

Block A 1 112 × 112 × 16 56 × 56 × 24 1 × 1 3 × 3 1 × 1 5,352 

Block B 1 56 × 56 × 24 56 × 56 × 24 1 × 1 3 × 3 1 × 1 9,144 

Block A 1 56 × 56 × 24 28 × 28 × 32 1 × 1 3 × 3 1 × 1 10,320 

Block B 2 28 × 28 × 32 28 × 28 × 32 1 × 1 3 × 3 1 × 1 30,528 

Block A 1 28 × 28 × 32 14 × 14 × 64 1 × 1 3 × 3 1 × 1 21,504 

Block B 3 14 × 14 × 64 14 × 14 × 64 1 × 1 3 × 3 1 × 1 165,312 

Block A 1 14 × 14 × 64 14 × 14 × 96 1 × 1 3 × 3 1 × 1 67,488 

Block B 2 14 × 14 × 96 14 × 14 × 96 1 × 1 3 × 3 1 × 1 239,040 

Block A 1 14 × 14 × 96 7 × 7 × 160 1 × 1 3 × 3 1 × 1 156,576 

Block B 2 7 × 7 × 160 7 × 7 × 160 1 × 1 3 × 3 1 × 1 644,160 

Block A 1 7 × 7 × 160 7 × 7 × 320 1 × 1 3 × 3 1 × 1 476,160 

Conv-3 1 7 × 7 × 320 7 × 7 × 1280 1 × 1 413,440 

Block CP 1 7 × 7 × 1280 1 × 1 × 64 7 × 7 1 × 1 3,293,014 

Total number of parameters : 5,533,942 

 

Table S4. Detail layer-wise architecture of JMLP. 

Layer Name # Iterations Input Size  Output Size Filter Size # Parameters 

Concat 1 1 × 1 × 64  1 × 1 × 64 1 × 1 × 128 - 0 

FC-1 1 1 × 1 × 128 1 × 1 × 64 1 × 1 8,256 
FC-2 1 1 × 1 × 64 1 × 1 × 64 1 × 1 4,160 
FC-3 1 1 × 1 × 64 1 × 1 × 4 1 × 1 260 

Softmax 1 1 × 1 × 4 1 × 1 × 4 - 0 
Classification 1 1 × 1 × 4 4 - 0 

Total number of parameters: 12,676 
 
 



 
(a)                                                                    (b) 

Figure S3. Architecture of the CP block: (a) CP block of IFC-Net, (b) CP block of MFC-Net. (BN: Batch normalization, ReLU: 
Rectified linear unit). 

 
 

 
                                            (a)                                                                                      (b) 

 
                                                (c)                                                                                      (d) 

Figure S4. Graphs of accuracies and losses for training and validation verifies the convergence of the three proposed 
networks without overfitting: (a) IFC-Net, (b) MFC-Net, (c) IMFC-Net (sequential), and (d) IMFC-Net (end-to-end). 

 

 

 



S1. Related Studies 
Before the advent of DL strategies, conventional machine learning (ML) techniques 

were used to identify different types of implants. The ML techniques include different 
algorithms for classification, such as k-nearest neighbor (k-NN), support vector machine, 
Naïve Bayes, and logistic regression. Moreover, the application of ML techniques has 
revolutionized the orthopedic field. The accuracy of implant placement has been 
improved using intraoperative computer-assisted navigation and patient-specific 
equipment. After the successful application of the DL models in object detection, 
classification, and localization, various DL algorithms have been successfully used to 
design classification [36,37] and segmentation frameworks [38–40] to diagnose different 
diseases. In addition, DL can be employed in orthopedic surgery. However, the use and 
potential advantages of DL-based models in arthroplasty are limited. Therefore, we listed 
the existing studies on the classification of different types of implants using the DL and 
ML techniques.  

S1.1. Classification of the Dental Implants 
Dental implants have been classified using handcrafted feature-based methods. For 

example, in [41], a simple image processing technique, called active contour, was used for 
the segmentation of dental implants in the 2D X-ray images. Furthermore, 91% of implants 
were accurately classified using the k-NN algorithm. 

Five deep convolutional neural networks (CNNs) were used in [42] to classify 11 
types of dental implants in X-ray images. Variants of the pre-trained visual geometry 
group (VGG) [22] models were used by fine-tuning and achieving an accuracy of 93.5%. 
However, the images were manually cropped and not validated by an expert. In [43], the 
performance of the DL algorithms was compared with that of dental professionals on the 
classification of six types of dental implants. High classification results of 95.4% area 
under the curve (AUC) were achieved, whereas the DL network outperformed dental 
professionals. However, they did not make a comparison with state-of-the-art CNNs in 
addition to not using a validation dataset. In [44], variants of residual networks were 
employed for the classification of 12 different models of dental implants. Multi- and 
single-task models were designed for the classification of the dental implant and implant 
treatment stages, respectively. The multi-task model outperformed other models by 
achieving an accuracy of 99.72%. A pre-trained Inception-V3 was used in [45] to identify 
three different types of dental implants. The transfer learning technique and fine-tuned 
Inception-V3 were used to achieve an AUC of 97.1%. However, their study lacks a 
comparative study with the existing state-of-the-art networks. Five different deep CNNs 
were used in [46] to classify four types of dental implants in X-ray images. All networks 
achieved an accuracy of more than 90% with a small dataset.  

S1.2. Classification of the Hip Implants 
An artificial intelligence (AI)-based system was designed to identify hip arthroplasty 

models in the postoperative anteroposterior (AP) X-rays [47]. In [47], YOLO-V3 [32] was 
used for the stem detection of hip implants and categorizing them using a six-layer CNN. 
The dataset distribution was highly disproportionate to low-quality images. Similarly, an 
AI-based classification framework was proposed in [48] to recognize the AP arthroplasty 
implants from 18 different manufacturers. An accuracy of 99.6% was achieved by training 
the network for up to 1,000 epochs. The power of DL algorithms was used in [49] for the 
classification of three types of hip arthroplasty implants on plain radiographs. High 
classification accuracy of 100% was achieved for a small dataset using online 
augmentation. The transfer learning approach with the DenseNet-201 [34] model was 
used to identify nine different implant models for total hip replacement [50]. However, 
the dataset was not uniformly distributed, and the model exhibited a modest performance 
for the minority classes. 

 



S1.3. Classification of the Knee Implants  
Various types of knee implants have been classified using different ML techniques. 

In [51], the template matching technique, Sobel operator, and binarization for segmenting 
the knee implants were used in the X-ray scans, which yielded an accuracy of 90% for 
frontal X-ray images. However, the model was unable to obtain a high accuracy for lateral 
X-ray images. 

A DL system was proposed in [52] for classifying three datasets of knee implants. 
Total knee arthroplasty (TKA) and unicompartmental knee arthroplasty were classified 
using variants of the pre-trained residual network. However, only two models of TKA 
were used, which limited the generalizability of the network and had the possibility of 
overfitting. In [53], knee implants were classified into nine different models from four 
manufacturers using a DL algorithm. High classification accuracy of 99% was achieved 
by training the model for up to 1,000 epochs. The images were preprocessed by cropping 
them manually. Furthermore, only AP radiographs were used, and the model was not 
trained on the lateral radiographs. In [54], a pre-trained residual CNN was employed, and 
seven different types of knee implant models were classified. The images were cropped 
manually, and the training data were augmented to achieve an accuracy of 100%. A DL 
network based on a dense block was proposed in [55] to identify four different types of 
knee implants. The dilated convolution was employed, which resulted in high 
classification accuracy for five-fold cross-validation using a pre-trained CNN. In addition, 
the ablation studies using normal 2D-convolution and state-of-the-art pre-trained 
networks were not considered.  

S1.4. Classification of the Shoulder Implants  
Handcrafted feature-based techniques have been used to classify the shoulder 

implants supplied by various manufacturers. In [18], the histogram equalization and 
Hough transform were applied to detect the shoulder implants based on their head circles. 
The images were preprocessed using different filters, including bilateral and median blur.  

Moreover, few DL-based studies have been conducted to recognize the shoulder 
implants based on manufacturers. A DL system was proposed in [35] for the binary 
classification of shoulder implants. TSA and RTSA were classified using a pre-trained 
residual network based on the transfer learning techniques. Five types of TSA implant 
models were classified using a separate classifier for each model. An implant dataset was 
collected from online archives. Therefore, the authenticity of the label was questioned. In 
[19], the first DL-based study was presented for the classification of the shoulder 
prostheses supplied by four different manufacturers. The non-DL and DL algorithms 
were compared in addition to a comparison between the pre-trained and non-pre-trained 
DL models. Ten-fold trials were performed using various pre-trained CNNs, which 
yielded a maximum accuracy of 80%. However, the validation dataset was not used, and 
the experiments were limited to a closed-world scenario. In [20], a DL-based ensemble 
network was proposed for the robust classification of different shoulder prostheses. The 
proposed network in [20] outperformed the method presented in [19] by achieving an 
accuracy of 85.92%. However, their ensemble model was replete with many parameters, 
and the state-of-the-art methods were not validated using a validation dataset. For a fair 
comparison, we used a validation dataset to validate all state-of-the-art methods, 
including our proposed networks. Our networks, IMFC-Net and IFC-Net, outperform the 
networks presented in [19,20] in terms of accuracy. With the performance gain, the 
number of parameters of IMFC-Net is 18.4% less than that presented in [20], indicating 
higher efficiency. 

Tables S6 and S7 compares the advantages and limitations of the previous study for 
recognizing different types of implants on radiographs. 

  



Table S5. A comparison between the state-of-the-art methods for dental and hip implant identification in X-ray scans. ML: Machine learning, DL: Deep learning, 
ACC: Accuracy, F1: F1.score, AP: Average precision, AR: Average recall, SPEC: Specificity, SEN: Sensitivity. 

Implant Dental Hip 

Technique ML DL DL 

Author Morais et al.  
[41] 

Sukegawa et al. 
[42] 

Lee et al.  
[43] 

Sukegawa et al.  
[44] 

Lee et al.  
[45] 

Kim et al.  
[46] 

Kang et al.  
[47] 

Karnuta et al. 
[48] 

Borjal
i et al.  
[49] 

Borjali et al.  
[50] 

# Classes 11 11 6 12 3 4 29 18 3 9 

Model k-NN VGG Deep CNN ResNet 
Inception- 

V3 

 
MobileNet- 

V2 

YOLO- 
V3 

Inception- 
V3 

Dense
Net- 
201 

DenseNet- 
201 

Result (%) 
91% of 

implants are 
detected 

AR: 90.7, AP: 
92.8,  

ACC: 93.5, F1: 
91.6 

AUC: 95.4,  
SEN: 95.5,  
SPEC: 85.3 

ACC:99.08,  
AR: 98.86 

AUC: 97.1 ACC: 97 AUC: 99 
ACC: 99.6,  
SEN: 94.3, 
SPEC: 99.8 

ACC: 
100 

ACC: 100 for 
five of nine 

designs 

Strength 

Used a 
simple image 

processing 
technique 
and an ML 

method. 

Analyzed the 
effects of a small 

dataset with 
four variants of 

the VGG-
network. 

The network 
outperformed 

the dental 
professionals. 

The model 
classified implant 

brands and 
treatment phases 
at the same time. 

The network 
exhibited an 
acceptable 

performance for 
periapical and 

panoramic images. 

Computati
onally less 
expensive. 

High AUC for 
a large number 

of classes. 

High 
classification 
performance. 

Robus
t 

recog
nition

. 

The model 
takes less 
time as 

compared to 
professionals

. 

Limitation 

An 
automatic 

approach can 
be used for 

segmentation
. 

Images are 
manually 

cropped and the 
VGG network 

can be replaced 
with deep state-

of-the-art 
networks. 

They did not use 
a validation 

dataset and did 
not make a 

comparison with 
the state-of-the-

art CNNs. 

The validation 
dataset was not 

used, and 
experiments were 
not performed for 

the open-world 
configuration. 

Ten times 
augmenting 

training data caused 
computational 

complexity. 

Images 
containing 
more than 

one 
implant are 
manually 

segmented. 

Preprocessing 
was needed, 

and 
labeling was 
performed 

manually by a 
non-expert. 

The model 
required more 
training time 

for 1000 
epochs. 

Comp
utatio
nally 
expen
sive. 

The model 
exhibited a 
moderate 

performance 
for minority 

classes. 



 

 

Table S6. A comparison between the state-of-the-art methods and our method for knee and shoulder implant identification in X-ray scans. ML: Machine learning, 
DL: Deep learning, ACC: Accuracy, F1: F1.score, AP: Average precision, AR: Average recall, SPEC: Specificity, SEN: Sensitivity. 

Implant Knee Shoulder 

Technique ML DL ML DL 

Author Bredow et al. 
[51] 

Yi et al.  
[52] 

Karnuta et al.  
[53] 

Belete et al. [54] Yan et al. [55] 
Stark et al.  

[18] 
Yi et al.  

[35] 
Urban et al.  

[19] 
Sultan et al.  

[20] 
Proposed 

# Classes 1 2 9 7 4 4 2 4 4 4 

Model Template 
matching 

ResNet 
Inception- 

V3 
ResNet 

Deep TKA 
classifier 

Hough 
transform 

ResNet NASNet DRE-Net IMFC-Net 

Result (%) ACC: 70-90 AUC: 100 
ACC: 99,  
AUC: 99, 
SPEC: 99 

ACC: 100 
AP: 97, 
AR: 97, 
F1: 97 

AP: 77, 
 F1: 64 

AUC: 97,  
SEN: 95, 
SPEC: 90 

ACC: 80.4,  
AP: 80,  
AR: 75,  
F1: 76 

ACC: 85.92, 
 AP: 85.33,  
AR: 84.11,  
F1: 84.69 

ACC: 89.09, 
AP: 89.54, 
AR: 86.57,  
F1: 87.94 

Advantages 

They used 
simple 
techniques 
with less 
memory 
consumption 
and time 
complexity. 

Training time is 
less than 60 
minutes, and 
testing time is less 
than 2 seconds. 

High 
classification 
performance. 

They used a 
validation 
dataset and 
achieved perfect 
results. 

They used the 
power of 
dilated 
convolution. 

An 
automatic 
classification 
framework 
based on 
simple 
conventional 
image 
processing 
techniques. 

High performance 
to classify TSA and 
RTSA. 

- Shows the 
significance of 
non-DL 
models over 
DL models. 
- Shows the 
significance of 
pre-trained 
CNNs over 
non-pre-
trained CNNs. 

An ensemble 
model with high 
classification 
performance. 

- An efficient 
ensemble model 
with fewer 
parameters and 
higher 
classification 
performance. 
- Validation 
dataset is used. 

Limitation 

The model is 
unable to get 
high accuracy 
for lateral X-
ray images. 

The model lacks 
generalizability 
due to a small 
number of classes. 

Model requires 
more training 
time for 1000 
epochs. 

Manual 
segmentation 
can be replaced 
with automated 
segmentation. 

Pre-trained 
CNNs can 
perform better 
than non-pre-
trained CNNs. 

Preprocessin
g is needed. 

Augmentation is 
needed and the 
model classifies the 
multiclass problem 
as a binary class. 

- Validation 
dataset is not 
used. 
- Results can 
be optimized. 

- An ensemble 
model with many 
parameters 
- Computationally 
complex. 

Requires more 
training time. 



 

 

 

Figure S5. Structural similarities between C1 (Cofield class) and C2 (Depuy class). 

 
Figure S6. Structural similarities between C1 (Cofield class) and C4 (Zimmer class). 

 
 


