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SUPPLEMENTARY METHODS 

This comprehensive analysis was an investigator-initiated study from multicenter, clinical observational 

studies conducted in a network of intensive care units (ICUs) from several geographical areas of Spain. 

The purpose of the study was to develop and validate an early prediction model for duration of 

mechanical ventilation (MV) longer than 14 days in patients with moderate-to-severe acute respiratory 

distress syndrome (ARDS) using machine learning (ML) techniques.  

Ethics Approval 

This study was approved by the Ethics Committee for Clinical Research at the Hospital Universitario Dr. 

Negrín, Las Palmas de Gran Canaria, Spain (Reference CEI/CEIm 2021-321-1). The need for informed 

consent was waived based on Spanish legislation for biomedical research (Royal Decree 1090/2015 

December 2015, and Royal Decree 957/2020 November 2020) due to the retrospective nature of the 

secondary analysis, the anonymization/dissociation of data, and no potential for harm or benefit to 

patients. 

 This study was conducted in accordance with the principles of the Declaration of Helsinki 

approved by the World Medical Association [1], the Convention of the European Council related to 

human rights and biomedicine, the International Code of Medical Ethics of the World Medical 

Association [2], and within the requirements established by the Spanish legislation for biomedical 

research, the protection of personal data, and bioethics. None of the findings reported in the present 

study have been published elsewhere.  

The study followed the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis (TRIPOD) guidelines for prediction models [3].  

Patient population 

This study is an extension of the Spanish Initiative for Epidemiology, Stratification and Therapies of 

Acute Respiratory Distress Syndrome (SIESTA) Program [4-7] (members are listed in Appendix 1 and 

Appendix 2 of this Supplemental File). We performed a comprehensive analysis, termed the PIONEER 

(“PredictION of duration of mEchanical vEntilation in aRds”) Study (registered on August 14th 2023 at 

ClinicalTrials.gov: NCT NCT05993377), of an unrestricted dataset derived from 1,303 adult (>17 years) 

patients with moderate-to-severe ARDS [8] treated with lung-protective MV in a network of ICUs from 

several geographical areas of Spain.  
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Study design 

This study was conducted in three steps. In the first two steps (model development and testing), we 

analyzed data derived from 1,000 patients included in three independent, prospective, multicenter, 

observational, and non-interventional cohorts, enrolling consecutive patients meeting current criteria for 

moderate/severe ARDS [8]. In the ALIEN cohort [4], 22 participating ICUs included 300 patients from 

September 2008 to May 2010 (NCT00736892). In the STANDARDS cohort [9,10], 24 participating ICUs 

included 300 patients from September 2013 to July 2015 (NCT02288949). The STANDARDS-2 cohort 

[11], 21 participating ICUs admitted 400 patients from August 2015 to April 2017 (NCT02836444).  

In the third step, we tested the performance of the model in an independent cohort of 303 

patients with moderate/severe ARDS included in the multicenter observational PANDORA study [7]. 

Patients were admitted in a network of 22 ICUs from May 2017 to March 2018 (NCT03145974). With 

this approach, we studied the temporal aspect and external validity of predicting prolonged duration of 

MV days as primary endpoint in future observational studies and clinical trials, since the new cohort 

contains recently treated ARDS patients. The external validation cohort has sufficient number of events 

required for external validation [12], recommended by recent guidelines [13].  

Patients admitted to participating ICUs were screened daily during the study periods. All patients 

were intubated and mechanically ventilated. All consecutive patients (in the ALIEN cohort) meeting the 

American-European Consensus Conference (AECC) criteria for ARDS [14] on positive end-expiratory 

pressure (PEEP) ≥5 cmH2O, and the Berlin criteria for moderate or severe ARDS [8] (in the 

STANDARDS, STANDARDS-2, and PANDORA cohorts) were included for this analysis. Of note, by 

leaving the assessment of PaO2/FiO2 essentially unchanged, the AECC definition and the Berlin criteria 

are basically identical. The requirement of a minimum PEEP level of 5 cmH2O has no impact on the 

definition since all patients with ARDS were managed with PEEP ≥5 cmH2O. Our screening applies only 

to patients with moderate-to-severe ARDS, which include: (i) having an initiating clinical condition 

(pneumonia, aspiration, overdose, sepsis, trauma, acute pancreatitis, etc.), (ii) within one week of a 

known clinical insult or new or worsening respiratory symptoms, (iii) bilateral pulmonary infiltrates on 

chest imaging, (iv) absence of left atrial hypertension or no clinical signs of left heart failure, and (v) 

hypoxemia (as defined by a PaO2/FiO2≤100 mmHg on PEEP≥5 cmH2O for severe ARDS, and 100 

mmHg<PaO2/FiO2≤200 mmHg on PEEP≥5 cmH2O for moderate ARDS, regardless of FiO2). We only 

included patients with moderate/severe ARDS. We did not enroll patients with persistent mild ARDS 
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during the entire ICU stay. However, no patients with mild ARDS were excluded if they moved to a more 

severe category, although we do not have data on the precise number of those patients. We excluded 

patients <18 years old, with severe chronic pulmonary disease, acute heart failure, with a do-not-

resuscitate orders, brain death, or patients receiving MV for <24 hours. 

For the purpose of this study and to avoid selection bias, we only analyzed patients with MV 

data from the first three ICU days after diagnosis of moderate/severe ARDS: data captured at the time 

of diagnosis of moderate/severe ARDS (T0), at 24 hours (T24), and at 72 hours (T72). Data from day 2 

were not collected in the parent studies. Therefore, we only considered patients on MV for ≥3 days with 

data at T0, T24, and at T72 to compare patients with data at those time-periods. As a result, we excluded 

130 patients on MV for <3 days (80 from 1,000 patients included in the development/testing cohort and 

50 from the 303 patients included in the validation cohort), and finally analyzed data from 920 patients 

in the derivation/testing cohort, and 253 patients from the external validation cohort.  

T0 was defined as the day in which the patient first met moderate/severe ARDS criteria, 

irrespective of the day of ICU admission or initiation of MV, as mandated by the Berlin definition [8]. All 

patients had arterial blood gases at study inclusion. We did not use peripheral capillary oxygen 

saturation (SpO2) as a surrogate for PaO2 for enrolling patients. At T24, values of gas-exchange and 

lung mechanics [including PaO2, PaCO2, PaO2/FiO2, inspiratory plateau pressure (Pplat), among others] 

were assessed in all patients under standardized ventilator settings [positive end-expiratory pressure 

(PEEP) of 10 cmH2O and FiO2 of 0.5] [7]. When patients required PEEP>10 or FiO2>0.5 and could not 

tolerate a decrease in PEEP or FiO2, a set of rules for setting PEEP and FiO2 were applied only during 

the standardized assessment, as described and validated previously by our group [11,15]. At other 

times, PEEP and FiO2 levels were set at the discretion of managing clinicians. For T72, we used 

representative data at 72 hours after diagnosis of moderate/severe ARDS.  

For appropriate identification of patients with moderate/severe ARDS, attending physicians 

considered qualifying blood gases only while patients were clinically stable, and did not consider 

transient falls in PaO2 resulting from acute events unrelated to the disease process (such as obstruction 

of endotracheal tube by secretions, endotracheal suctioning, ventilator disconnection, or sudden 

pneumothorax). Also, because diagnostic inclusion could occur with other diseases that cause 

hypoxemia and have bilateral pulmonary infiltrates on radiographs, clinicians excluded lymphangitic 
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carcinomatosis, acute eosinophilic pneumonia, hypersensitivity pneumonitis, and idiopathic pulmonary 

fibrosis [16].  

General Care 

Attending clinicians followed current guidelines for general critical care management, which included 

the following: (i) in case of sepsis, physicians were urged to ensure early identification of causative 

microorganism, intravenous administration of antibiotics as soon as bacterial sepsis was suspected or 

recognized, and to optimize antibiotic selection and timely administration on the bases of antibiogram; 

(ii) fluid resuscitation and vasopressor use were individualized with the goal of maintaining a systolic 

blood pressure ≥90 mmHg or a mean arterial pressure ≥65 mmHg; (iii) to maintain hemoglobin between 

7-10 g/dL. For ventilatory management, clinicians followed current recommendations for lung-protective 

ventilation with a tidal volume (VT) of 4-8 mL/kg predicted body weight (PBW), a Pplat <30 cmH2O, a 

ventilatory rate (RR) to maintain a PaCO2 between 35-50 mmHg (permissive hypercapnia was allowed 

to target VT), and PEEP and FiO2 combinations according to the PEEP-FiO2 table of the ARDSnet 

protocol [17], ensuring that among the PEEP and FiO2 combinations, clinicians should use the PEEP 

levels that allowed the reduction of FiO2 to the lowest levels for maintaining a PaO2 within a target range 

of 60 to 100 mmHg or a SpO2 within a target range of 90 to 98%. Routine blood parameters were left to 

the discretion of the responsible physician, but it was not mandatory to record them, although clinicians 

used routinely that information for diagnosis and magamen5t of the underlying disease process, for 

scoring organ dysfunction, and as mandated by SOF scale and for APACHE II score. 

 The choice of drugs for sedation and analgesia, early neuromuscular blockade, prone 

positioning, recruitment maneuvers, hemodynamic management modalities, and the decision to perform 

a tracheostomy were left to the discretion of the attending physician. PBW was calculated using the 

following formula: 50 + 0.91 x [height (cm) – 152] for men, and 45.5 + 0.91 x [height (cm) – 152] for 

women [17]. Although prone positioning and recruitment maneuvers were used in some patients, we do 

not have data on timing of prone positioning, or whether prone ventilation and recruitment maneuvers 

were applied as a rescue therapy, as a routine practice, or following any specific protocol. Features 

highly dependent on ICU variability, such as active treatment and chronic conditions reporting, were not 

recorded to improve usability across health systems. 

 Weaning off MV was not strictly protocolized, but could be started when the attending physician 

considered it clinically appropriate. Patients were assessed daily for readiness for a spontaneous 
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breathing trial (SBT) based on the ARDSnet protocol [17]. In general, prerequisites for the SBT included 

a partial reversal of the underlying cause of ARDS, a PaO2/FiO2 >200 mmHg with PEEP <10 cmH2O 

and FiO2 ≤0.4, no vasopressors, continuous sedation minimized, and ability to cough during tracheal 

aspirations. Spontaneous ventilation was tested with a T-piece or with pressure support at 8 cmH2O. 

The duration of the SBT was at least 30 min and no longer than 120 min. If the patient passed the trial, 

a decision for extubation was taken, unless there was a specific reason not to extubate. Weaning and 

the decision to extubate were left to the discretion of the responsible physician. Since the rate of 

reintubation after extubation for all indications is estimated at about 20% [18], patients at high risk for 

reintubation [>65 years of age, or hypercapnic (PaCO2 >45 mmHg after extubation), ineffective cough 

and excessive secretions, ≥1 weaning failure, with more than one comorbid condition, upper airway 

obstruction, or APACHE II score >12 on the day of extubation], non-invasive ventilatory support for 24 

to 48 hours was indicated until stable or requiring reintubation [19]. 

Variables and Outcomes 

Data were collected in each participating ICU using standardized case report forms and transmitted to 

the coordinating center (Hospital Universitario Dr. Negrin) when the patient was discharged from 

hospital. Before exporting the data into a computerized database, a trained data collector from the 

coordinating center checked the completeness and the quality of information. Logical checks were 

performed for missing data and for finding inconsistences, especially regarding clinical diagnosis, dates, 

and severity scores. If necessary, the data collector contacted the investigator to validate the data or 

reformat the data for entry into the database. 

 Selection of clinically relevant variables was based on our previous studies [11,20]. To build the 

models, we analyzed information from 165 variables including demographics, comorbidities, and data 

from ventilator settings and lung mechanics [VT, RR, PEEP, Pplat, driving pressure (calculated as Pplat 

minus PEEP) and gas exchange (PaO2, PaCO2, FiO2, PaO2/FiO2, pH)] at T0, T24 and T72. Attending 

physicians recorded the most common comorbidities (we only considered comorbidities with a 

prevalence >5%), as reported in our previous work [20]: neoplastic diseases, liver disease, cardiac 

disease, immunosuppression, diabetes, and morbid obesity. Neoplastic diseases included cancer in 

solid organs and hematological malignancies. Being immunosuppressed or immunocompromised was 

a result of certain diseases or conditions, or because of medication or treatment for a disease or 

condition, including, but not limited to cancer or organ transplantation. We also recorded the APACHE 
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II (Acute Physiology And Chronic Health Evaluation II) score [21] during the first 24 hours of ARDS 

diagnosis, the Sequential Organ Failure Assessment (SOFA) score [22], and the occurrence of 

extrapulmonary organ system failures included in the SOFA scale (cardiovascular system, liver, kidney, 

coagulation system, and central nervous system). Since the term “organ dysfunction” is unclear and 

because organ dysfunction may emerge from reasons other than sepsis, extrapulmonary organ failure 

was defined as an acute change in organ-specific SOFA score ≥2 [23,24]. The baseline SOFA score 

was assumed to be zero in patients not known to have preexisting organ dysfunction. Sepsis was 

defined according to 2001 International Consensus Conference criteria [25]. We recorded the actual 

duration of MV, the length of stay in the ICU, and date and status (alive or dead) at ICU and hospital 

discharge.  

Our primary goal was to compare the performance of three machine learning (ML) methods and 

conventional statistics in predicting prolonged duration of MV after the diagnosis of moderate/severe 

ARDS over time. We examined the performance of each method with respect to T0, T24, and T72. For 

the purpose of this study, prolonged MV was defined as being ventilated for >14 days after diagnosis of 

moderate/severe ARDS, based on previous work by our group [26]. 

Statistical analysis plan 

Predefined rules, pre-specified statistical analysis, and variable selection 

We defined and specified in advance rules and expectations before the final statistical and machine 

learning analysis was conducted, realizing that overly detailed analysis could produce overoptimistic 

results due to a combination of reduced statistical power to detect real differences, or due to an increase 

in the variance around the mean estimates, and/or an increased statistical likelihood of a false finding 

when too many variables are examined.  

 Since feature selection is important in building a prediction model that is easily actionable and 

interpretable in clinical decision making, we collected data from 165 variables in each patient during 

their ICU stay. We focused on variables collected at T0, T24 and T72 to estimate the probability of 

duration of MV>14 days, independent of the underlying disease or whether the patient died (Figure S1) 

based on previous work by our group [9-11]. Our aim for variable selection was to incorporate clinically 

relevant variables while avoiding noise/redundant variables.  

 We first described the full dataset of patients with moderate-to-severe ARDS ventilated for at 

least three days (n=920). Thus, we listed the values of each variable for all 920 patients at T0, T24, and 
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T72. The distribution of values for all variables identified a wide range of duration of MV. Second, we 

initially considered the following features as potential predictors of prolonged MV: age, sex, 

comorbidities (neoplastic diseases, liver disease, cardiac disease, immunosuppression, diabetes, 

morbid obesity), SOFA score, number of extrapulmonary OF, PaO2, PaO2/FiO2, PaCO2, pH, FiO2, VT, 

RR, PEEP, Pplat, and driving pressure. We did not include respiratory compliance in the model because 

it shares collinearity with three Independent variables needed for its calculation (VT, Pplat, and PEEP). 

According to the panel of experts of the Berlin definition [8], respiratory compliance did not contribute to 

the predictive validity of severe ARDS for mortality and it was removed from the ARDS definition. 

Although we have the APACHE II score [21] reported at T0 and T24, we did not include it in the model 

because it is a cumbersome score designed for the first 24 hours of ICU admission, made of 12 

physiological variables and two disease-related variables, it is not routinely calculated at the bedside in 

most ICUs worldwide or during trial enrollment decisions, it requires numerous data elements, and relies 

on laboratory data that are not uniformly collected. In addition, at least half of the variables needed to 

calculate the APACHE II score are included in the list of selected variables, such as age, PaO2, FiO2, 

respiratory rate, pH, renal function, neurological function, and comorbidities.  

Third, we identified potential variables that could be included in the prediction models based on 

our redefined rules and their contribution to the area under the receiver operating characteristic (ROC) 

curve (AUC), and their p-values in relation to duration of MV (Table S1). A ROC curve essentially has 

two components represented by the sensitivity and 1-specificity [27]. AUC is an effective way to 

summarize the overall prognostic accuracy of a variable or test, and it is most useful for assessing 

relevance of treatment effects. When representing and reporting the AUC, the point corresponding to 

no change (AUC=0.5) is represented by a diagonal line (45-degree line or no discriminatory ability for 

the outcome of interest).  

Fourth, although several variables could share collinearity with other independent variables 

(FiO2 and PaO2 for the calculation of the PaO2/FiO2 ratio; Pplat and PEEP for the calculation of driving 

pressure), we considered all variables at the initial steps of our analysis. Whether driving pressure 

relates causally to outcome remains to be established in randomized controlled trials, despite we valued 

Pplat in our previous studies [10,11,28]. Other variables seemed to have redundancy (the value of SOFA 

score and the number of extrapulmonary OF). To avoid multicollinearity, we built correlation matrices at 

T0, T24, and T72 as a statistical tool to calculate the linear relationship between two variables in the 
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dataset [29-31] for excluding features with multicollinearity (Figure S3). The matrix shows how all 

possible pairs of values in a table that are related to each other. It is a powerful tool for summarizing a 

large data set and showing patterns in the data. The correlation coefficient ranges from -1 to +1, where 

1 is considered a strong positive relationship between variables, 0 means a neutral relationship, and -1 

means a negative correlation. We also performed a principal component analysis (PCA) as a statistical 

procedure that allows summarizing the information content by means of a smaller set of “summary 

indices” that can be more easily visualized and analyzed [31-33] (Figure S4). It is a popular multivariate 

statistical technique used in pattern recognition and signal processing based on projection methods. 

The goal of PCA is to extract the important information from the data and to express this information as 

a set of summary indices called principal components [31-33]. The first and second principal component 

provide an approximation of what model or projection is better. The first principal component represents 

the maximum variance direction in the data. The second principal component reflects the second largest 

source of variation in the data. When the two principal components are derived, they define a plane. In 

the specific context of our study, adding the numerical values of both components provides a tendency 

in the direction of data in favor of which day seems better positioned to predict MV>14 days.  

Fifth, variable selection or feature subset selection is a common task in machine learning (ML) or data 

mining models. ML is a branch of artificial intelligence (AI) encompassing two major approaches: 

supervised and unsupervised learning [34]. The objective of supervised ML is to develop an algorithm 

capable of predicting a unique output when provided with a specific input. The expectations are that the 

resulting algorithm would deliver accurate predictions when exposed to new and never before data. 

Since the inclusion of all available variables in a ML model could produce noisy results which are difficult 

to interpret, we screen variables employing a genetic algorithm (GA) variable selection method [35] as 

a technique to achieve parsimony and to identify a subset of relevant and significant variables (subset 

selection) for a potential accurate prediction model, while excluding noise/redundant variables. GA 

variable selection is a technique that helps to identify a subset of the measured variables that are, for a 

given problem, the most useful for a precise and accurate regression model. Although many variables 

may be of use in a prediction, several considerations may preclude measuring all the variables originally 

considered for a prediction model. In these cases, it is useful to identify a subset of variables that allow 

sufficient prediction accuracy and precision while minimizing the number of variables to be measured. 

GA provide a straightforward method based on a “survival of the fittest” approach to modelling data. GA 
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is a heuristic search algorithm mimicking the process of biological evolution and natural selection [36]. 

GA creates random populations of artificial individuals that are evaluated by a mathematical fitness 

function. GAs have been successfully applied to solve optimization problems, both for continuous and 

discrete functions. In this sense, variable selection for logistic regression models can be regarded as an 

optimization problem, and thus can be solved by GAs [37,38]. Our findings indicate that for the purpose 

of our study, the GA approach is appropriate for finding an efficient subset of variables for combinations 

that are optimal for solving high dimensional classification problems. Duration of MV can be treated as 

a classification problem. The selection of an optimized set of variables in our three early scenarios (T0, 

T24, T72) is key in the PIONEER study for predicting prolonged duration of MV, especially when the 

search is large, complex or poorly understood, as in the setting of moderate/severe ARDS. We decided 

to use GA for feature/variable selection due to our previous successful experience with it [39]. 

Sixth, when applying GA for variable selection, we optimize the subset of selected variables by 

minimizing the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) [40] 

(Figure S2). AIC is an estimator of prediction error and thereby relative quality of statistical models for 

a given set of data. BIC is a criterion for model selection among a finite set of models. For both criteria, 

lower values are preferred. We also calculated the variance inflation factor (VIF), a measure of 

multicollinearity in regression logistic analysis. Multicollinearity exists when there is a correlation 

between multiple independent variables in a multiple regression model. For the purpose of our study, 

only variables with a VIF<5 were included in the model [30]. We searched in the data for model 

specification since the model was not pre-specified. For building the PIONEER prediction model for 

moderate/severe ARDS patients, we considered the model with the minimum number of variables that 

provided a similar or better performance as the full-variable predictor model (Tables S4-S10).  

Seventh, we evaluated the final model with the minimum number of variables at each time 

scenario using three supervised ML techniques: Random Forest (RF), Support Vector Machine (SVM) 

and Multilayer Perceptron (MLP) [41-45]. RF is a supervised ML algorithm, which combines the output 

of multiple decision trees to reach a single result. The RF algorithm is made up of a collection of decision 

trees, and each tree in the ensemble is comprised of a data sample drawn from a training set with 

replacement [43]. While decision trees consider all the possible feature split, RF only select a subset of 

those features, resulting in precise predictions. SVM is one of the prevailing algorithms because the 

data in biomedical research are often limited. One of the main strengths of the SVM is the ability to 
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efficiently construct complex decision boundaries from limited samples [41,44]. The deep learning MLP 

is a feed for forward neural network with a basic architecture comprising fully connected layers [44,45]. 

The input layer has the same number of inputs that the total predictor variables. The middle layer looks 

for characteristics associated with the data. The output layer had the same number of outputs as the 

categories to predict. The R packages for ML that we used are the following: Caret, pROC, 

randomForest, Keras, and e1071. 

For ML techniques, input data were randomly split into training data (train), made up of 80% of 

the 920 records (736 rows), and the remaining 20% (184 rows) were used as test data. With the intention 

of reducing noise, each of the selected variables was normalized using the following formula: 

 

Z = X – min (X) / [max (X) – min (X)] 

 

Where X is one of the selected genes, min (X) is the minimum value, max (X) is the maximum value, 

and Z is the resulting variable that was used for the ML process. 

 

Building the development and validation datasets 

A popular approach is to randomly split the data into two parts: one to develop the model (training cohort) 

and another to measure its performance (validation cohort). However, this split-sample method is often 

inefficient [46,47]. We used a 5-fold cross-validation for splitting randomly the 920-patient dataset as 

736 patients for development (training) and 184 patients for testing (validating). This computerized 

technique replicates the process of sample generation by drawing samples with replacement from the 

original dataset [48], which means that the data set is divided into 5 folds, and in each run, 4 (80%) were 

used for training (n=736) and the remaining 1 (20%) was used for testing (n=184). We repeated the 5-

fold cross-validation 100 times for obtaining a stable estimate with the mean values of 500 validation 

samplings.  

Calculations were performed using the R Core Team software 2023 (R version 4.3.1) 

(https://www.r-project.org) (R Foundation for Statistical Computing, Vienna, Austria).  

We compared the predictive performance of the three ML methods using the following 

parameters: accuracy, sensitivity, specificity, from the confusion matrix for both the validation and the 
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test dataset [49]. These values were calculated using the indicators true positive, false positive, false 

negative and true negative.    

External validation 

As the third step, and for solving the complexity of validation of our prediction model, we tested the 

performance of the model in fully new patients. We analyzed a cohort of 253 consecutive patients 

ventilated ≥3 days with moderate-to-severe ARDS included in the multicenter PANDORA study [7]. With 

this approach, we studied the temporal aspect of external validity of the model since this independent 

cohort contains recently treated patients. The external validation cohort had a sufficient number of 

events (≥100 patients ventilated >14 days) required for external validation [12]. As recommended by 

recent guidelines [13], we avoided the retraining on the external dataset. 

Data analysis 

We calculated the mean, standard deviation (SD), median and the interquartile range (IQR) of 

quantitative variables. We used the Kolmogorov-Smirnov test to examine the normal distribution of data. 

We calculated the frequency and percentage of qualitative variables. We reported data as percentages 

or mean ± SD, unless otherwise specified. We reported the odds ratio and 95% confidence intervals 

(CI). We assessed differences in the values of clinically relevant features in the three scenarios (T0, 

T24, T72), and across the development/testing cohort and the external validation cohort. We analyzed 

differences between distributions of categorical variables with the Fisher’s exact test. We identified 

potential variables that could be included in the prediction model based on our predefined rules, the 

AUC, and their p-values. For all comparisons, a two-sided significance level of p-value <0.005 was 

considered a real effect size, as recommended [50]. 

We measured the mean decrease in Gini coefficient as a measure of how each variable 

contributes to the homogeneity in the resulting RF algorithm model [51]). We also calculated three 

measures (intercept, calibration slope, and c-statistic) to assess the validity of the prediction models, 

related to calibration and discrimination, and plotted graphically, by studying the external validity of the 

models developed in 920 patients and tested in 253 patients [47,52].  
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SUPPLEMENTARY RESULTS 

ICU and hospital mortalities of development and validation cohorts were similar [307/920 

(33.4%) vs. 77/253 (30.4%), p=0.420; and 347/920 (37.7% vs. 87/253 (34.4%, p=0.368, respectively] 

(Table S2). From the original derivation/testing cohort of 1000 patients, 80 patients (8%) were on MV 

for <3 days, and most of them (68/80, 85%) died in the ICU due mainly to multisystem organ failure 

(n=47, 69.1%), refractory sepsis/septic shock (n=10, 14.7%), and refractory hypoxemia (n=8, 11.8%). 

Only 12 patients out of 80 (15%) on invasive MV for <3 days from the derivation cohort survived at ICU 

discharge.  

Considering ICU mortality in relation to duration of MV, ICU mortality rates of both subgroups 

(MV>14 days vs. MV 3-14 days) were similar in the derivation [152/441 (34.5%) vs. 155/479 (32.4%), 

OR 1.10 (95%CI 0.84-1.45) (p=0.529), respectively] and validation cohorts [25/100 (25.0%) vs. 52/153 

(34.0%), OR 1.54 (95%CI 0.88-2.71) (p=0.162), respectively] (Table S3). 

Median duration of MV in 920 patients from the derivation cohort was 14 days (IQR: 8-25 days): 

441 patients (47.9%) were on MV>14 days and 479 (52.1%) were ventilated for 3-14 days. From 479 

patients on MV for 3-14 days, almost a third of them (n=155, 32.4%) died in the ICU, mainly due to 

multisystem organ failure (n=68, 43.9%), refractory hypoxemia (n=38, 24.5%), and refractory 

sepsis/septic shock (n=24, 15.5%). In the validation cohort of 253 patients, where the median duration 

of MV was 13 days (IQR: 7-21 days): 100 patients (39.5%) were on MV>14 days and 153 (60.5%) were 

ventilated for 3-14 days.  

Using a correlation matrix at T0, T24, and T72, we identified that PaO2/FiO2 was highly 

correlated with FiO2 and PaO2, Pplat with driving pressure, and SOFA score with the number of 

extrapulmonary OF (Figure S3). As a result, we eliminated from the analysis the following variables: 

PaO2, FiO2, SOFA score, and driving pressure. The principal component analysis (PCA) supported the 

finding that the two clusters (MV>14 days vs. MV 3-14 days) differed more at T72 than at baseline or at 

T24 (Figure S4). 

The final model minimizing AIC and BIC for prediction of duration of MV>14 days was based on 

values of variables at T72. We found that PaO2/FiO2, PaCO2, pH, and PEEP at T72 were among the 

most predictive features (Figures S5, S6), suggesting that most features collected at baseline or at 24h 

were irrelevant or useless for early prediction of duration of MV>14 days in patients with 

moderate/severe ARDS. Models developed at one time period are not transferable to other time periods. 
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Table S1. Univariate logistic regression of 20 clinically relevant variables in 920 patients with 

moderate-to-severe ARDS ventilated ≥3 days, in relation to prediction of duration of 

mechanical ventilation >14 days. 

 

Variables b SE OR (95%CI) P-value AUC 

Age 0 0 1 (1.0 – 1.01) 0.29 0.52 

Sex (male) 0.28 0.14 1.32 (1.0 – 1.75) 0.05 0.53 

Cardiac disease -0.35 0.26 0.71 (0.42 – 1.18) 0.186 0.51 

Diabetes -0.04 0.19 0.96 (0.66 – 1.38) 0.818 0.50 

Immunosuppressed  0.27 0.22 1.3 (0.84 – 2.03) 0.234 0.51 

Morbid obesity 0.38 0.23 1.47 (0.93 – 2.33) 0.098 0.52 

Liver disease -0.04 0.29 0.96 (0.54 – 1.71) 0.886 0.50 

Neoplastic disease 0.06 0.17 1.06 (0.76 – 1.48) 0.730 0.50 

SOFA at T0 0.04 0.02 1.04 (1.0 – 1.08) 0.055 0.55 

SOFA at T24 0.05 0.02 1.05 (1.01 – 1.09) 0.011 0.56 

SOFA at T72 0.05 0.02 1.05 (1.01 – 1.08) 0.007 0.57 

VT at T0 0.02 0.06 1.02 (0.9 – 1.15) 0.791 0.50 

VT at T24 -0.05 0.07 0.95 (0.82 – 1.1) 0.474 0.51 

VT at T72 -0.04 0.06 0.96 (0.85 – 1.09) 0.527 0.51 

FiO2 at T0 0.16 0.35 1.17 (0.59 – 2.32) 0.649 0.51 

FiO2 at T24 0.73 0.38 2.07 (0.99 – 4.36) 0,055 0.54 

FiO2 at T72 1.33 0.34 3.79 (1.96 – 7.37) <0.001 0.59 

Respiratory rate at T0 0.02 0.01 1.02 (1.0 – 1.05) 0.093 0.54 

Respiratory rate at T24 0.03 0.01 1.03 (1.0 – 1.06) 0.033 0.54 

Respiratory rate at T72 0-04 0.01 1.04 (1.02 – 1.07) 0.001 0.56 

PEEP at T0 0.04 0.02 1.04 (1.0 – 1.08) 0.037 0.54 

PEEP at T24 0.04 0.02 1.05 (1.0 -1.09) 0.047 0.54 

PEEP at T72 0.08 0.02 1.09 (1.04 – 1.13) <0.001 0.58 

Plateau pressure at T0 0.02 0.01 1.02 (0.99 – 1.05) 0.122 0.53 

Plateau pressure at T24 0.03 0.01 1.03 (1.0 – 1.06) 0.033 0.54 

Plateau pressure at T72 0.05 0.01 1.06 (1.03 – 1.09) <0.001 0.58 

Driving pressure at T0 0 0.01 1 (0.98 – 1.03) 0.844 0.51 

Driving pressure at T24 0.01 0.01 1.01 (0.99 – 1.04) 0.32 0.52 

Driving pressure at T72 0.02 0.01 1.02 (0.99 – 1.05) 0.309 0.53 

PaO2 at T0 -0.01 0 0.99 (0.99 – 1.0) 0.016 0.55 

PaO2 at T24 0 0 1 (0.99 – 1.0) 0.061 0.52 

PaO2 at T72 0 0 1 (0.99 – 1.0) 0.101 0.53 

PaO2/FiO2 at T0 0 0 1 (0.99 – 1.0) 0.017 0.54 

PaO2/FiO2 at T24 0 0 1 (0.99 -1.0) 0.012 0.55 

PaO2/FiO2 at T72 0 0 1 (0.99 – 1.0) <0.001 0.59 

PaCO2 at T0 0.01 0.01 1.01 (1.0 – 1.02) 0.074 0.54 

PaCO2 at T24 0-02 0.01 1.02 (1.01 – 1.04) <0.001 0.57 

PaCO2 at T72 0.03 0.01 1.03 (1.02 – 1.05) <0.001 0.59 

pH at T0 -0.18 0.62 0.84 (0.25 – 2.85) 0.776 0.50 

pH at T24 -1.82 0.8 0.16 (0.03 -0.78) 0.023 0.54 

pH at T72 -0.04 0.84 0.96 (0.18 – 5.02) 0.958 0.51 

No. extrapulmonary OF at T0 0.14 0.06 1.15 (1.01 – 1.3) 0.033 0.55 

No. extrapulmonary OF at T24 0.14 0.06 1.15 (1.02 – 1.3) 0.019 0.55 

No. extrapulmonary OF at T72 0.11 0.06 1.11 (1.0 – 1.24) 0.06 0.55 

 
ARDS: acute respiratory distress syndrome, AUC: area under the receiver operating characteristic 
curve, b: beta, CI: confidence intervals, OF: organ failures, OR: odds ratio, PEEP: positive end-
expiratory pressure, SE: standard error, SOFA: sequential organ failure assessment, T0: at the time of 
moderate/severe ARDS diagnosis, T24: at 24 hr after moderate/severe ARDS diagnosis, T72: at 72 hr 
after moderate/severe ARDS diagnosis, VT: tidal volume. 
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Table S2. Baseline demographics, etiology, degree of severity, and outcome data of 1,173 

patients with moderate/severe ARDS. 

 

 

 

 

 

Variables  Development cohort 
n = 920 

Testing cohort 
n = 253 

p-value 

Age, yr, mean ± SD 56.5 ± 16.0 57.2 ± 14.7 0.531* 

Sex, n (%) 
Male 

Female 

 
624 (67.8) 
296 (32.2) 

 
189 (74.7) 
64 (25.3) 

0.043¶ 

Etiology, n (%) 
Pneumonia 

Sepsis 
Aspiration 

Trauma 
Acute pancreatitis 

Multiple transfusions 
Others 

 
458 (49.8) 
246 (26.7) 

90 (9.8) 
72 (7.8) 
23 (2.5) 
9 (1.0) 
22 (2.4) 

 
92 (36.4) 
60 (23.7) 
45 (17.8) 
35 (13.8) 
8 (3.2) 
3 (1.2) 
10 (4.0) 

 
<0.001¶ 
0.374¶ 

<0.001¶ 
0.005¶ 
0.718¶ 
0.729¶ 
0.258¶ 

Degree of severity, n (%) 
Severe 

Moderate 

 
370 (40.2) 
550 (59.8) 

 
88 (34.8) 

165 (65.2) 

0.134¶ 

APACHE II, mean ± SD 20.4 ± 6.4 20.6 ± 7.7 0.688* 

Days on MV, mean ± SD 19.6 ± 17.8 16.0 ± 15.8 0.004* 

All-cause ICU mortality, n (%) 307 (33.4) 77 (30.4) 0.420¶ 

All-cause hospital mortality, n (%) 347 (37.7) 87 (34.4) 0.368¶ 

 
APACHE: acute physiology and chronic health evaluation, ARDS: acute respiratory distress syndrome, 
ICU: intensive care unit, IQR: interquartile range, MV: mechanical ventilation. 

(*) Student’s t-test; (¶) Fisher’s exact test 
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Table S3. Distribution and outcome of patients with moderate/severe ARDS in relation to 

duration of mechanical ventilation. ARDS: acute respiratory distress syndrome, CI: confidence 

intervals, ICU: intensive care unit, MV: mechanical ventilation, OR: odds ratio, T0: time of diagnosis of 

moderate/severe ARDS. 

 

 

 

 

 

Duration of MV Derivation cohort 
(N=920) 

    n         ICU deaths 

Validation cohort 
(N=253) 

  n         ICU deaths 

Difference (95%CI) in  
ICU mortality  

(derivation vs. validation) 
 

OR (95%CI) 

p-value 

3-14 days from T0   479       155 (32.4%)   153         52 (34.0%) 1.6% (-6.7 to 10.4) 
 

0.93 (0.63 to 1.37) 

0.714 
 

0.767 

>14 days from T0   441       152 (34.5%)   100          25 (25.0%) 9.5% (-0.7 to 18.2) 
 

1.58 (0.96 to 2.58) 

0.068 
 

0.077 

Difference (95%CI) ICU deaths 
(3-14 vs. >14 days) 
 
OR (95%CI) 

2.1% (-4.0 to 8.2) 
 
 

0.91 (0.69 to 1.20) 

9.0% (-2.7 to 19.8) 
 
 

1.54 (0.88 to 2.71) 

- 
 
 
- 

- 
 
 
- 

p-value 
0.500 
0.529 

0.129 
0.162 

- - 
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Table S4. Performance of a model predicting duration of MV>14 days considering clinically 

relevant variables (n=16) collected at diagnosis (T0) in 920 patients with moderate/severe ARDS 

using logistic regression analysis. PaO2, FiO2, driving pressure, and SOFA (sequential organ failure 

assessment) score are not included due to multicollinearity (see text for details). Data are expressed as 

mean values of logistic coefficients. 

 

 

 

Variables b SE OR (95%CI) p-value VIF 

Intercept -14.66 6.47 0 (0 - 0.13) 0.024  

Age 0.01 0 1.01 (1 - 1.02) 0.093 1.17 

Sex (male) 0.34 0.15 1.41 (1.05 - 1.89) 0.021 1.06 

Cardiac disease -0.51 0.27 0.6 (0.35 - 1.02) 0.062 1.08 

Diabetes -0.06 0.20 0.94 (0.64 – 1.39) 0.773 1.06 

Immunosuppressed 0.32 0.24 1.37 (0.86 – 2.2) 0.184 1.09 

Obesity 0.37 0.24 1.45 (0.9 – 2.35) 0.128 1.08 

Liver disease -0,19 0.31 0.83 (0.45 – 1.52) 0.547 1.09 

Neoplastic disease -0.05 0.18 0.96 (0.67 – 1.36) 0.798 1.08 

VT 0.12 0.07 1.12 (0.97 – 1.3) 0.117 1.30 

Respiratory rate 0.02 0.02 1.02 (0.99 – 1.05) 0.153 1.18 

PEEP 0.03 0.02 1.03 (0.98 – 1.08) 0.220 1.27 

Plateau pressure 0.01 0.02 1.01 (0.98 – 1.04) 0.687 1.18 

PaO2/FiO2 0 0 1 (0.99 – 1.0) 0.052 1.08 

PaCO2 0.01 0.01 1.01 (1 – 1.03) 0.043 1.73 

pH 1.59 0.85 4.89 (0.93 – 26.24) 0.062 1.78 

No. extrapulmonary OF 0.16 0.07 1.17 (1.02 – 1.35) 0.021 1.17 

AIC 1273.26 

BIC 1355.28 

AUC 0.6125 

 
ARDS: acute respiratory distress syndrome, AIC: Akaike information criterion, AUC: area under the 
receiver operating characteristic curve, b: beta, BIC: Bayesian information criterion, CI: confidence 
intervals, OF: organ failures, OR: odds ratio, PEEP: positive end-expiratory pressure, SE: standard 
error, VIF: variance inflation factor, VT: tidal volume. 
 
  



19 
 

Table S5. Performance of a model predicting duration of MV>14 days considering clinically 

relevant variables (n=16) collected at 24 hours of diagnosis (T24) of 920 patients with 

moderate/severe ARDS using logistic regression analysis. PaO2, FiO2, driving pressure, and SOFA 

(sequential organ failure assessment) score are not included due to multicollinearity (see text for details). 

Data are expressed as mean values of logistic coefficients. 

 

 

 

Variables b SE OR (95%CI) p-value VIF 

Intercept -6.7 7.93 0 (0 – 6778) 0.398  

Age 0.01 0 1.01 (1 - 1.02) 0.078 1.16 

Sex (male) 0.3 015 1.34 (1.01 – 1.8) 0.046 1.05 

Cardiac disease -0.48 0.28 0.62 (0.36 – 1.05) 0.080 1.07 

Diabetes -0.06 0.2 0.94 (0.64 – 1.39) 0.757 1.07 

Immunosuppressed 0.3 0.24 1.35 (0.85 – 2.17) 0.202 1.08 

Obesity 0.38 0.24 1.47 (0.91 – 2.38) 0.118 1.08 

Liver disease -0.22 0.31 0.8 (0.43 – 1.48) 0.481 1.08 

Neoplastic disease -0.08 0.18 0.92 (0.65 – 1.32) 0.665 1.09 

VT 0.05 0.08 1.05 (0.89 – 1.24) 0.549 1.20 

Respiratory rate 0.02 0.01 1.02 (0.99 – 1.05) 0.247 1.21 

PEEP 0.02 0.03 1.02 (0.97 – 1.07) 0.375 1.21 

Plateau pressure 0.01 0.02 1.01 (0.97 – 1.04) 0.737 1.32 

PaO2/FiO2 0 0 1 (1 – 1) 0.235 1.14 

PaCO2 0.02 0.01 1.02 (1 – 1.04) 0.029 1.65 

pH 0.53 1.03 1.71 (0.23 – 12.95) 0.604 1.59 

No. extrapulmonary OF 0.13 0.07 1.14 (1 – 1.31) 0.046 1.20 

AIC 1273.40 

BIC 1355.46 

AUC 0.6119 

 
ARDS: acute respiratory distress syndrome, AIC: Akaike information criterion, AUC: area under the 
receiver operating characteristic curve, b: beta, BIC: Bayesian information criterion, CI: confidence 
intervals, OF: organ failures, OR: odds ratio, PEEP: positive end-expiratory pressure, SE: standard 
error, VIF: variance inflation factor, VT: tidal volume. 
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Table S6. Performance of a model predicting duration of MV>14 days considering clinically 

relevant variables (n=16) collected at 72 hours of diagnosis (T72) of 920 patients with 

moderate/severe ARDS using logistic regression analysis. PaO2, FiO2, driving pressure, and SOFA 

(sequential organ failure assessment) score are not included due to multicollinearity (see text for details). 

Data are expressed as mean values of logistic coefficients. 

 

 

 

 

Variables b SE OR (95%CI) p-value VIF 

Intercept -34.07 8.1 0 (0 - 0) <0.001  

Age 0.01 0 1.01 (1 – 1.02) 0.071 1.16 

Sex (male) 0.38 0.15 1.46 (1.09 – 1.97) 0.012 1.05 

Cardiac disease -0.52 0.28 0.59 (0.34 – 1.03) 0.066 1.07 

Diabetes 0.01 0.2 1.01 (0.68 – 1.51) 0.948 1.07 

Immunosuppressed 0.39 0.24 1.48 (0.92 – 2.4) 0.109 1.08 

Obesity 0.32 0.25 1.38 (0.85 – 2.26) 0.198 1.08 

Liver disease -0.22 0.31 0.8 (0.43 – 1.47) 0.475 1.06 

Neoplastic disease 0 01.8 1 (0.69 – 1.44) 0.996 1.10 

VT 0.1 0.07 1.1 (0.96 – 1.27) 0.168 1.19 

Respiratory rate 0.03 0.01 1.03 (1 – 1.06) 0.036 1.21 

PEEP 0.05 0.02 1.05 (1.01 – 1.1) 0.029 1.28 

Plateau pressure 0.01 0.02 1.01 (0.98 – 1.05) 0.410 1.33 

PaO2/FiO2 0 0 1 (0.99 – 1) <0.001 1.17 

PaCO2 0.03 0.01 1.03 (1.01 – 1.05) 0.002 1.38 

pH 4.06 1.07 57.81 (7.22 - 483.9) <0.001 1.48 

No. extrapulmonary OF 0.13 0.07 1.14 (1.01 – 1.3) 0.040 1.23 

AIC 1232.5 

BIC 1314.47 

AUC 0.6600 

 
ARDS: acute respiratory distress syndrome, AIC: Akaike information criterion, AUC: area under the 
receiver operating characteristic curve, b: beta, BIC: Bayesian information criterion, CI: confidence 
intervals, OF: organ failures, OR: odds ratio, PEEP: positive end-expiratory pressure, SE: standard 
error, VIF: variance inflation factor, VT: tidal volume. 
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Table S7. Performance of a model of predicting MV duration >14 days at the time of diagnosis 

(T0) of 920 patients with moderate/severe ARDS, using logistic regression analysis and 

minimizing the Akaike information criterion. The model reduced the number of selected variables 

from 16 to 9. 

 

 

 

 

 
 

Variable b SE OR (95%CI) p-value VIF 

Intercept -13.33 6.4 0 (0 – 0.42) 0.037  

Age 0.01 0 1.01 (1 – 1.02) 0.129 1.07 

Sex (male) 0.3 0.15 1.36 (1.02 – 1.81) 0.038 1.03 

Cardiac Disease -0.53 0.27 0.59 (0.34 – 1) 0.052 1.07 

Obesity 0.39 0.24 1.48 (0.93 – 2.37) 0.098 1.02 

Respiratory rate 0.02 0.01 1.02 (0.99 – 1.05) 0.056 1.05 

PaO2/FiO2 0 0 1 (0.99 – 1) 0.023 1.03 

PaCO2 0.01 0.01 1.01 (1 – 1.03) 0.052 1.64 

pH 1.61 0.84 5.01 (0.97 – 26.46) 0.056 1.76 

No. extrapulmonary OF 0.16 0.07 1.17 (1.03 – 1.34) 0.018 1.1 

AIC 1265.36 

BIC 1313.61 

AUC 0.6055 

 
ARDS: acute respiratory distress syndrome, AIC: Akaike information criterion, AUC: area under the 
receiver operating characteristic curve, b: beta, BIC: Bayesian information criterion, CI: confidence 
intervals, OF: organ failures, OR: odds ratio, SE: standard error, VIF: variance inflation factor. 
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Table S8. Performance of a model of predicting MV duration >14 days at 24 hours (T24) after the 

diagnosis of 920 patients with moderate/severe ARDS, using logistic regression analysis and 

minimizing the Akaike information criterion. The model reduced the number of selected variables 

from 16 to 6. 

 

 

 

 

 
 

Variable b SE OR (95%CI) p-value VIF 

Intercept -1.86 0.43 0.16 (0.07 – 0.36) <0.001  

Age 0.01 0 1.01 (1 – 1.02) 0.136 1.06 

Sex (male) 0.27 0.15 1.31 (0.99 – 1.75 0.061 1.02 

Cardiac Disease -0.48 0.27 0.62 (0.36 – 1.06) 0.082 1.06 

Obesity 0.42 0.24 1.53 (0.96 – 2.44) 0.073 1.02 

PaCO2 0.02 0.01 1.02 (1.01 – 1.04) 0.002 1.01 

No. extrapulmonary OF 014 0.06 1.15 (1.02 – 1.3) 0.019 1.01 

AIC 1260.70 

BIC 1294.52 

AUC 0.5974 

 
ARDS: acute respiratory distress syndrome, AIC: Akaike information criterion, AUC: area under the 
receiver operating characteristic curve, b: beta, BIC: Bayesian information criterion, CI: confidence 
intervals, OF: organ failures, OR: odds ratio, SE: standard error, VIF: variance inflation factor. 
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Table S9. Performance of a model of predicting MV duration >14 days at 72 hours (T72) after the 

diagnosis of 920 patients with moderate/severe ARDS, using logistic regression analysis and 

minimizing the Akaike information criterion. The model reduced the number of selected variables 

from 16 to 11. 

 

 

 

 

 
 

Variable b SE OR (95%CI) p-value VIF 

Intercept -33.36 8.13 0 (0 - 0) <0.001  

Age 0.01 0 1.01 (1 – 1.02) 0.071 1.10 

Sex (male) 0.36 0.15 1.43 (1.07 – 1.92) 0.018 1.04 

Cardiac disease -0.5 0.28 0.60 (0.34 -1.04) 0.074 1.07 

Immunosuppressed 0.36 0.24 1.43 (0.9 – 2.29) 0.135 1.04 

VT 0.1 0.07 1.11 (0.96 – 1.27) 0.152 1.19 

Respiratory rate 0.03 0.01 1.03 (1.0 – 1.06) 0.027 1.19 

PEEP 0.06 0.02 1.07 (1.02 – 1.11) 0.004 1.11 

PaO2/FiO2 0 0 1.0 (0.99 – 1.0) <0.001 1.11 

PaCO2 0.03 0.01 1.03 (1.01 – 1.05) 0.001 1.36 

pH 3.99 1.06 54.21 (6.88 – 446) <0.001 1.46 

No. extrapulmonary OF 0.12 0.06 1.13 (1.0 – 1.28) 0.055 1.16 

AIC 1225.30 

BIC 1283.23 

AUC 0.6582 

 
ARDS: acute respiratory distress syndrome, AIC: Akaike information criterion, AUC: area under the 
receiver operating characteristic curve, b: beta, BIC: Bayesian information criterion, CI: confidence 
intervals, OF: organ failures, OR: odds ratio, PEEP: positive end-expiratory pressure, SE: standard 
error, VIF: variance inflation factor. 
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Table S10. Performance of a model of predicting MV duration >14 days at 72 hours (T72) after 

the diagnosis of 920 patients with moderate/severe ARDS, using logistic regression analysis and 

minimizing the Bayesian information criterion (BIC). The model reduced the number of variables 

from 16 to 4. 

 

 

 

 

 
 

Variable b SE OR (95%CI) p-value VIF 

Intercept -21.64 7.36 0 (0 – 0) 0.003  

PEEP 0.06 0.02 1.06 (1.02 – 1.11) 0.004 1.07 

PaO2/FiO2 0 0 1 (0.99 – 1) <0.001 1.10 

PaCO2 0.03 0.01 1.03 (1.01 – 1.04) 0.001 1.24 

pH 2.75 0.98 15.59 (2.32 – 108.02) 0.005 1.26 

AIC 1232.50 

BIC 1256.67 

AUC 0.6313 

 
ARDS: acute respiratory distress syndrome, AIC: Akaike information criterion, AUC: area under the 
receiver operating characteristic curve, b: beta, BIC: Bayesian information criterion, CI: confidence 
intervals, OF: organ failures, OR: odds ratio, PEEP: positive end-expiratory pressure, SE: standard 
error, VIF: variance inflation factor. 
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Table S11. External validation of the 11 and 4-variable model at T72 in an independent cohort of 

253 patients with moderate/severe ARDS. NOTE: We used the 920-patient population as the training 

cohort and the new 253 patients as the testing cohort.   

 
 
 
 
 
 

 
AUC: area under the receiver operating characteristic curve, CI: confidence intervals, NPV: negative 
predictive value, PPV: positive predictive value. 
 
  

Time Methods Model AUC (95%CI) Sensitivity Specificity Accuracy PPV NPV 

T72 
 

Multilayer Perceptron 
Random Forest 
Support Vector Machine 
Logistic regression 

11-variable 
11-variable 

11-variable 
11-variable 

0.51 (0.44-0.58) 
0.51 (0.44-0.58) 
0.45 (0.38-0.53) 
0.50 (0.42-0.57) 

0.41 
0.38 
0.19 
0.63 

0.58 
0.61 
0.80 
0.44 

0.51 
0.52 
0.56 
0.52 

0.39 
0.39 
0.38 
0.43 

0.60 
0.60 
0.60 
0.65 

T72 
 

Multilayer Perceptron 
Random Forest 
Support Vector Machine 
Logistic regression 

4-variable 
4-variable 
4-variable 
4-variable 

0.57 (0.50-0.64) 
0.54 (0.46-0.61) 
0.56 (0.48-0.63) 
0.52 (0.44-0.59) 

0.21 
0.45 
0.19 
0.48 

0.82 
0.59 
0.80 
0.59 

0.58 
0.54 
0.56 
0.55 

0.43 
0.42 
0.38 
0.44 

0.61 
0.62 
0.60 
0.64 
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Figure S1. Time line for the early prediction model on duration of mechanical ventilation (MV) 

>14 days.  In many cases, the duration of MV finalized at the time of ICU death. The duration of MV 

was predicted using the data at the time of moderate/severe ARDS diagnosis, at 24 h, and at 72 hours 

later. 
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Figure S2. Analysis flowchart. AIC: Akaike information criterion; ARDS: acute respiratory distress 

syndrome; BIC: Bayesian information criterion (see text for details). 
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Figure S3: Correlation matrices at T0, T24 and T72 of 12 variables associated with MV duration. 

Blue represents positive correlation, and red represents negative correlation. The area of the pie chart 

represents the specific value of correlation coefficients.  
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Figure S4.  Principal component analysis (PCA) of predictors of MV duration in ARDS patients 

(Cluster of patients on MV>14 days is marked in blue and cluster of patients on MV ≤14days in red). 

Although there is overlapping between the clusters, the two clusters differed more at T72 (Dim1 + Dim2 

= 43.7 + 21.8 = 65.5) than at any other study time.  
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Figure S5. Variable importance of variables at T0, T24 and T72 of 9, 6, 11 and 4 variable models 

for prediction of duration of MV>14 days in terms of mean decrease in Gini using Random Forest 

classification. The mean decrease in GINI coefficient is a measure on how each variable contributes 

to the homogeneity in the resulting ML algorithm. The higher the value of mean decrease accuracy or 

mean decrease Gini score, the higher the importance of the variable in the model. 
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Figure S6. Calibration plots of the Multilayer Perceptron-based (A,B), Random Forest-based 
(C,D), Support Vector Machine-based (E,F), and logistic regression-based (G,H) MV >14 days 
prediction model at T72 for the 11- and 4-variable model, respectively. The intercept relates to 
calibration-in-the-large, which compares mean observed with mean predicted risks. The calibration 
slope reflects the coefficient of the calibration plot. The c-statistic indicates the discriminative ability.  
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APPENDIX I. Centers and Members of the PIONEER Project: 

• Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain: Jesús Villar, Jesús M. González-

Martín, Cristina Fernández, Estrella Gómez-Bentolila, Rosa L. Fernández, Pedro Rodríguez-Suárez; 

• Hospital General Universitario, Ciudad Real, Spain: Alfonso Ambrós, Rafael del Campo, Carmen Martín-

Rodríguez, Ana Bueno-González, Carmen Hornos-López;  

• Complejo Hospitalario Universitario de La Coruña, La Coruña, Spain: Fernando Mosteiro, Lidia Pita-

García, Ana M. Díaz-Lamas, Regina Arrojo;  

• Hospital Universitario Virgen de Arrixaca, Murcia, Spain: Domingo Martínez, Juan A. Soler, Luís A. 

Conesa-Cayuela; Ana M. del Saz-Ortiz; 

• Hospital General Universitario Rafael Méndez, Lorca, Murcia, Spain: Lucía Capilla;  

• Hospital Universitario Río Hortega, Valladolid, Spain: Lorena Fernández, Jesús Sánchez-Ballesteros, 

Jesús Blanco, Arturo Muriel, Pablo Blanco-Schweizer, César Aldecoa, Jesús Rico-Feijoo, Alba Pérez, 

Silvia Martín-Alfonso; 

• Complejo Hospitalario Universitario de León, León, Spain:  Ana M. Domínguez, Francisco J. Díaz-

Domínguez, Raúl I. González-Luengo, Demetrio Carriedo, Myriam González-Vaquero;  

• Hospital Clínico Universitario, Valencia, Spain: Marina Soro, Javier Belda, Andrea Gutiérrez, Gerardo 

Aguilar;  

• Hospital Clinic, Barcelona, Spain: Carlos Ferrando;  

• Hospital Universitario La Paz, Madrid, Spain: José M. Añón, Belén Civantos, Mónica Hernández; 

• Hospital Clínico Universitario, Valladolid, Spain: David Andaluz, Laura Parra, Leonor Nogales;  

• Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain: Raquel Montiel, Dácil Parrilla, 

Eduardo Peinado, Lina Pérez-Méndez; 

• Hospital Virgen de la Luz, Cuenca, Spain: Rosario Solano, Elena González-Higueras;  

• Hospital Fundación Jiménez Díaz, Madrid, Spain: Anxela Vidal, Denis Robaglia, César Pérez;  

• Hospital Universitario Mutua Terrassa, Terrassa, Barcelona: M. Mar Fernández; 

• Massachussets General Hospital, Boston, Massachusetts, USA: Robert M. Kacmarek (deceased). 

• Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada: Karen E.A. Burns. 

• Aneurin Bevan University Health Board, Newport, Wales, United Kingdom: Tamas Szakmany; 

• Leiden University Medical Center, Leiden, The Netherlands: Ewout W. Steyerberg; 
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APPENDIX 2. Members and Centers of the SIESTA Network: 

• Jesús Villar, Rosa L. Fernández, Cristina Fernández, Jesús M. González-Martín, Pedro Rodríguez-

Suárez, Estrella Gómez-Bentolila (Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, 

Spain);  

• Alfonso Ambrós, Rafael del Campo, Carmen Martín-Rodríguez, Ana Bueno-González, Carmen Hornos-

López (Hospital General Universitario, Ciudad Real, Spain);  

• Fernando Mosteiro, Ana M. Díaz-Lamas, Regina Arrojo, Lidia Pita-García (Complejo Hospitalario 

Universitario de La Coruña, La Coruña, Spain);  

• Lorena Fernández, Jesús Sánchez-Ballesteros, Jesús Blanco, Arturo Muriel, Pablo Blanco-Schweizer, 

José Ángel de Ayala, César Aldecoa, Jesús Rico-Feijoo, Alba Pérez, Silvia Martín-Alfonso (Hospital 

Universitario Río Hortega, Valladolid, Spain);  

• Domingo Martínez, Juan A. Soler, Ana M. del Saz-Ortiz, Luis A. Conesa-Cayuela (Hospital Universitario 

Virgen de Arrixaca, Murcia, Spain);  

• Demetrio Carriedo, Ana M. Domínguez-Berrot, Francisco J. Díaz-Domínguez, Raúl I. González-Luengo, 

M. González-Vaquero (Complejo Hospitalario Universitario de León, León, Spain);  

• Lucía Capilla (Hospital General Universitario Rafael Méndez, Lorca, Murcia, Spain);  

• David Andaluz, Leonor Nogales, Laura Parra (Hospital Clínico Universitario, Valladolid, Spain);  

• Elena González-Higueras, Rosario Solano, María J. Bruscas (Hospital Virgen de la Luz, Cuenca, Spain);  

• Blanca Arocas, Marina Soro, Javier Belda, Andrea Gutiérrez, Ernesto Pastor, Gerardo Aguilar (Hospital 

Clínico Universitario, Valencia, Spain);  

• Carlos Ferrando (Hospital Clinic, Barcelona, Spain);  

• José M. Añón, Belén Civantos, Mónica Hernández (Hospital Universitario La Paz, Madrid, Spain);  

• Raquel Montiel, Dácil Parrilla, Eduardo Peinado, Lina Pérez-Méndez (Hospital Universitario NS de 

Candelaria, Tenerife, Spain);  

• Anxela Vidal, Denis Robaglia, César Pérez (Hospital Universitario Fundación Jiménez Díaz, Madrid, 

Spain);  

• María del Mar Fernández (Hospital Universitario Mutua Terrassa, Terrassa, Barcelona, Spain);  

• Eleuterio Merayo, Chanel Martínez-Jiménez, Ángeles de Celis-Álvarez (Hospital del Bierzo, Ponferrada, 

León, Spain);  
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• Juan M. Mora-Ordoñez, J. Francisco Martínez-Carmona, Álvaro Valverde-Monto, Victoria Olea-Jiménez 

(Hospital Regional Universitario de Málaga, Málaga, Spain);  

• Concepción Tarancón, Silvia Cortés-Díaz (Hospital Virgen de la Concha, Zamora, Spain);  

• Carmen Martín-Delgado (Hospital La Mancha Centro, Alcázar de San Juan, Ciudad Real, Spain); 

• Francisca Prieto (Hospital Santa Bárbara, Puertollano, Ciudad Real, Spain);  

• Isidro Prieto, Mario Chico, Darío Toral (Hospital Universitario 12 de Octubre, Madrid, Spain);  

• Miguel A. Romera, Carlos Chamorro-Jambrina (Hospital Universitario Puerta de Hierro, Majadahonda, 

Madrid, Spain);  

• Alec Tallet, Santiago Macías, Noelia Lázaro (Hospital General de Segovia, Segovia, Spain);  

• Isabel Murcia, Ángel E. Pereyra (Hospital General Universitario de Albacete, Albacete, Spain);  

• Francisco Alba, Ruth Corpas (Hospital NS del Prado, Talavera de la Reina, Toledo, Spain);  

• David Pestaña, Pilar Cobeta, Adrián Mira (Hospital Universitario Ramón y Cajal, Madrid, Spain);  

• Francisca Prieto (Hospital Santa Barbara, Puertollano, Ciudad Real, Spain); 

• Lluis Blanch, Gemma Gomá, Gisela Pili (Corporació Sanitaria Parc Taulí, Sabadell, Barcelona, 

Spain); 

• Antonio Santos-Bouza, Cristina Domínguez (Complejo Hospitalario Universitario de Santiago, 

Santiago de Compostela, La Coruña, Spain); 

• Javier Collado, José I. Alonso (Hospital Río Carrión, Palencia, Spain); 

• Alberto Indarte, María E. Perea (Hospital General Yagüe, Burgos, Spain); 

• Ricardo Fernández, José I. Lozano (Hospital de Hellín, Albacete, Spain) 

• Robert M. Kacmarek (deceased) (Massachussets General Hospital, Boston, Massachusetts, USA);  


