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Supplement I Matching Requirements.

Depending on the binary xtLTLf operator of choice, we might set a successful match
if at least two events in a trace, one per operator, match anytime in the future (Ei

Θ), or
if correlation conditions hold across activated and targeted events within the temporal
window of interest (e.g., Until; Ai

Θ). Given some maps M1 and M2 associating events of
interest from the same trace σi to a list L providing the activation and target conditions to
be tested, we define such two distinct matching requirements as follows:

Ei
Θ(M1, M2) =

n
M[h, k]

��� ∃j ∈ dom(M1) ∩ dom(M2), L1 ∈ M1(j), L2 ∈ M2(j).

(A(h) ∈ L1 ∨ ∃h′.M[h, h′] ∈ L1),

(T(k) ∈ L2 ∨ ∃k′.M[k, k′] ∈ L2), Θ(σi
h, σi

k)
o

(S1)

Ai
Θ(M1, M2) =

(
∅ ∃j ∈ dom(M1) ∩ dom(M2).Ei

Θ([j 7→ M1(j)], [j 7→ M2(j)]) = ∅
Ei

Θ(M1, M2) oth.
(S2)

where i indicates the trace id (e.g., of σi) from which the events in L should be considered
while reconstructing their associated payload while determining the binary predicate Θ.

After expressing the different matching semantics as such, we skip testing correlations
when (e.g.) only one of the two operands will contain activation (or target) events. We
distinguish the case where the activation and target conditions of interest are missing
because some basic operators did not return those from the scenario where the correlation
condition was tested but failed. While in the former we return either an empty set or a set
of just activations or targets, in the latter we want to return a placeholder False to remember
that the correlation condition was falsified. We can then define a testing functor as follows:

T F,i
Θ (M1, M2) =





cod(M1) ∪ cod(M2) dom(M1) = ∅ ∨ dom(M2) = ∅
Fi

Θ(M1, M2) Fi
Θ(M1, M2) ̸= ∅

False oth.

(S3)

where F subsumes one of the two matching semantics of choice, either Ei
Θ or Ai

Θ.
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Supplement II Time Complexity

Supplement II.1 Pipeline Components

We now discuss the first two procedures from Algorithm 2.

Lemma S1. BULKINSERTION can be computed in quasi-linear time with respect to the full log
size (thus including the trace size, as well as the size of their associated payload).

Proof. As most of the data structures are vectors (Lines 7 and 8) and the only two maps are
a hashmap (Line 6) and a hashmap of ordered maps (Line 11), this phase has a quasi-linear
time computational complexity with respect to the size of the log, thus showing that no
additional overhead for pre-calculating the semantics associated to the declarative clauses
is required in [60]. In fact, bulk inserting the data requires scanning all the traces and their
associated events, as well as its possible associated payload, while the insertion in the
AttBulkMapk performs a sorted insertion for each value p(k) (Line 11); this pays a log-linear
cost over the number of distinct values per key k.

Lemma S2. LOADINGANDINDEXING has linear time complexity with respect to the log size
(trace and data payload inclusive).

Proof. We show that the first outer for loop has a time complexity in O(|L|ϵ). The ini-
tialization of the primary index of ActivityTableL requires a linear scan of every unique
activity label of the log, with index assignments being performed in constant time (Line
18). The loading of the aforementioned table (minus assignments of Prev(Next)) requires a
scan of every element of the log, thus providing a linear complexity with respect to the log
size (inclusive of trace lengths, Line 23). The loading of the CountingTableL has complexity
O(|Σ||L|) (Line 20), which is always dominated by loading of the ActivityTableL, as it is
guranteed that |Σ| ≤ |L|ϵ. In fact, in the worst-case scenario, every single event has a
unique activity label, and therefore |Σ| = |L|ϵ = |ActToEventBulkVector|. In the best-case
scenario, there is only one activity label (|Σ| = 1) providing a linear complexity with log
size.

In the best case scenario, no trace comes with a data payload, and therefore the entire
outermost second loop is skipped as the set of keys is completely empty, and therefore
no AttributeTableκ

L will be initialised. Otherwise, loading an AttributeTableκ
L associated to

a key κ ∈ K requires a linear scan over each activity label a from Σ. While doing so, we
cals access the AttBulkMap for every unique activity label and payload key, from which
we also scan all the events from lst associated to a same value ν. The initialisation of each
AttributeTablek

L primary index is linear with respect to the number of unique activity labels
(Line 35); the loading and secondary indexing of AttributeTableκ

L is bounded by the number
of events associating a value ν to each key κ of interest. In the worst-case scenario, every
event contains the same key labels. Overall, this provides a complexity dominated by
the number of key-value associations in each event and therefore by |K|, as each event
can contain an unlimited number of payload keys. This boils down to a worst-case time
complexity of O(|L|ϵ|K|).

We show that the last outer for loop also has a time complexity in O(|L|ϵ). This in-
cludes the assignment of the Prev (Next) pointers and the initialisation of the ActivityTableL’s
secondary index , requiring only a linear scan of the log (trace inclusive). No other data
structures are iterated, therefore we always perform computations in O(|L|ϵ) time.

Overall, in the best case scenario no event is associated to a payload, and therefore
the time complexity is dominated by the first two loops, which provide a time complexity
linear to the log size, trace size included: O(|L|ϵ). Otherwise, we have to scan each value
associated to each event which, in the worst case scenario, requires a full scan of |K| for
each event. In this other scenario, the time complexity is heavily dominated by the data
payload and therefore is O(|L|ϵ|K|).

Last, we discuss the time complexity for the query processing algorithms.
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Lemma S3. ATOMISATIONPIPELINE (Algorithm 3) has polynomial time complexity with respect
to the model, key-set, and elementary intervals’ maximum size.

Proof. In the best-case scenario, all the clauses have no payload conditions, for which the
activation condition will only contain the activation (or target) activity label. For this, we
only pay the linear cost of scanning the model, O(|M|). In the worst-case scenario, each
clause has a non-trivial payload condition for activation and target (when available): this
implies always computing an intersection over unordered sets, which has the computational
cost of scanning the smaller set and checking which elements are contained in the larger,
where each operation takes O(1) time. We can assume that each p is described in disjunctive
normal form and that its size is negligible if compared to the size of both the collected
elementary intervals and the model. Given that usually ak(B) contains all of the atoms
referring to the data predicates to B and therefore Atomµ,ad(B, κ) ⊆ ak(B) for any κ ∈ K, we
have a computational complexity of O(m|K||M|) under the assumption that each clause’s
data payload condition contains predicates for any payload key in O(|K|) and that each
interval has a size comparable to the maximum size of m = µ(a, κ) for a ∈ Σ and κ ∈ K.

Lemma S4. QUERYSCHEDULER (Algorithm 5) has a linear time complexity with respect to the
number of operators appearing in the compiled query plan.

Proof. If we exclude the root node, the branching factor of our graph is at most 2, as each
operator (represented as a node in the graph) might contain at most two sub-expressions;
therefore, we can estimate that the number of edges of G is linear with respect to the
graph nodes. As the scheduler is represented through a vector of vectors and the distance
computation requires visiting each edge associated with each non-leaf node, while filling
the scheduler layer-wise just requires visiting each operator, the time complexity of this
step is linear with respect to the operators appearing in the formula.

Supplement II.2 Operators’ algorithmic implementation

We now discuss the computational complexity of the xtLTLf operators. Let us assume
that ℓ is the size of the collected events in L that need to be matched. Let us also remember
that the intermediate results ρ and ρ′ are represented as vectors of triplets sorted by trace
and event id. Let us also assume all traces have a maximum length of ϵ. In the worst case
scenario, we have |ρ| = |ρ′| = |L|ϵ.

Lemma S5. Future(ρ) has linear time complexity with respect to the operand size while Futureτ(ρ)
has quadratic time complexity with respect to the maximum trace length size.

Proof. The computational complexity associated with the untimed Future operator boils
down to performing an aggregation for each trace represented in the operand as well as its
represented event, where its collected activation/target conditions are all associated with
the first event of the trace. Therefore, this has a linear time complexity with respect to the
size of each operand, i.e. |ρ| ∈ O(|L|ϵ).

On the other hand, its timed counterpart (Futureτ) needs both to list all of the events in
the operand and, for each of them, to associate to it also the activation and target conditions
happening in the future, thus requiring a quadratic cost over the size of each trace. This
boils down to O(|L|ϵ2).

Lemma S6. TIMEDINTERSECTION has computational complexity in O(ℓ2|L|ϵ).

Proof. The time complexity of the TIMEDINTERSECTION is in the worst-case scenario in
O(ℓ2|L|ϵ) if we assume that each matched event needs to be tested and that ρ and ρ′ have
non-empty Ls. If either Θ is always true or the Ls of the two operands are empty, the time
complexity boils down to O(|L|ϵ).
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Corollary S1. For Θ = True, FASTUNTIMEDAND(ρ, ρ′) is faster than SLOWUNTIMEDAND(ρ, ρ′).
For ℓ ≈ 1, the theoretical speed-up is proportional to the increase of both trace length and number of
traces.

Proof. The time complexity of the SLOWUNTIMEDAND is in the worst case scenario in
O(ℓ2|L|ϵ2): as the former is a minor adaptation of TIMEDINTERSECTION where, never-
theless, we have to pay a quadratic cost for scanning the whole traces as in timed future
(Futureτ). This has also an additional cost of O(|L| log |L|ϵ) gained while grouping the
operands’ results by trace id.

On the other hand, its FASTUNTIMEDAND avoids a quadratic cost if Θ = True by only
collecting the activation and target conditions through a linear scan of both operands, thus
boiling down its computational complexity to O(2|L|ϵℓ).

At this point, we can compute the speed-up of the allegedly slower version over the
faster one by checking when the following condition holds:

ℓ2|L|ϵ2 + 2|L| log |L|ϵ
2|L|ϵℓ =

ℓϵ

2
+

log |L|
ℓ

> 1

We can close the goal after observing that the aforementioned condition always holds,
and that is heavily dominated by the average trace length.

Corollary S2. Computing FASTUNTIMEDAND(ρ, ρ′) is more efficient than its equivalent
FASTUNTIMEDAND(Future(ρ), Future(ρ′)) by a theoretical constant speed up.

Proof. By expanding and composing the definitions of the former computational complex-
ities, we get that the speed-up is almost constant for small ℓ values:

2|L|ϵ + 2Lϵℓ

2Lϵℓ
=

1
ℓ
+ 1 > 1

Corollary S3. Computing FASTUNTIMEDOR(ρ, ρ′) is more efficient than Choice as per its orig-
inal Declare semantics, i.e. FASTUNTIMEDOR(Future(ρ), Future(ρ′)) by a theoretical constant
speed up.

Proof. As when no traces match we have no additional matching costs as they are just
collected in the final results with a linear scan, the worst-case scenario boils down to
performing trace matches as per the previous corollary.

Lemma S7. For Θ = True, UNTIMEDUNTIL2(ρ, ρ′) is faster than UNTIMEDUNTIL1(ρ, ρ′) for
greater log sizes.

Proof. In both implementations of the untimed Until operator, for each log trace, we
perform a logarithmic scan for reaching the end of each trace within the operand. Trace by
trace, the computation time decreases with the number of the operand’s traces being visited.
This can be expressed as ∑

|L|−1
i=0 log(|L− i|ϵ) = ∑

|L|
i=1 log(iϵ). Given ∑n

i=0 log i = log(i!),
we can rewrite the computational cost of such operation as follows:

|L|
∑
i=1

log(iϵ) =
|L|
∑
i=1

(log i + log ϵ) = log(|L|!) + |L| log ϵ ≤ |L|(log |L|ϵ)

In its worst-case scenario, UNTIMEDUNTIL1 always run the same scan over each trace’s
targeted events for each activated event in the second operand, while its Fast- counterpart
performs constant access for each of the ϵ trace events. So, while UNTIMEDUNTIL2 has an
overall time complexity of ϵ|L|, the former has the upper bound of:
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=
|L|
∑
i=1

(log i +
ϵ

∑
j=1

log j) ≤ |L| log |L|+ |L|ϵ log ϵ = |L| log(|L|ϵϵ)

Furthermore, for both implementations we pay at most a quadratic cost for scanning
each targeted event that needs to hold until the activation is met, thus including the cost
of inserting the matched conditions in the intermediate result set. This implies a cost of
O(ϵ2|L|) despite Θ = True. As for the speed-up we can neglect the sub-operations having
the same computational complexity22, we can rewrite the asymptotic speed-up as:

|L| log(|L|ϵϵ)

ϵ|L| =
log |L|

ϵ
+ log ϵ > 1

which is always true only for adequately large traces, ε ≫ 0. We can see that if ϵ
is fixed, the speed-up grows proportionally with the log size. As the equation is always
true for non-empty datasets, the fast implementation is always faster than the slower
counterpart.

Corollary S4. For Θ = True, the second variant of the (timed) ANDGLOBALLY (Algorithm S2)
is theoretically more performant than the first one (Algorithm S1) when the number of traces is
exponentially upper bounded by the maximum trace length size.

Proof. In the second variant of the operator, for each trace, we always perform a logarithmic
scan for both operators for determining the end of the trace. As seen in the previous lemma,
this corresponds to O(|L| log(|L|ϵϵ)). While scanning the trace events backwards we have
that, in the worst-case scenario, each event on the left operand corresponds an event on
the right one. This operation, as well as the gradual backward creation of the result, boils
down to an additional time complexity of 2ϵ|L|.

In the first algorithm for the operator (referred to as “variant”), we scan all of the
events per single trace, this reducing to 2|L|ϵ, but, for each event in the left operand, we
have to scan all of the events in the right one until the end of the trace, thus adding up to a
quadratic computational complexity with respect to the trace size: ϵ|L|.

The asymptotic and theoretical speed-up can be then computed as follows:

ϵ2|L|
2|L| log(|L|ϵϵ)

=
ϵ2

2(log |L|+ ϵ log ϵ)
> 1 ⇔ ϵ2

2
− ϵ log ϵ > log |L|

⇔ |L| < 2ϵ2/2−ϵ log ϵ ≤
p

2ϵ2

We can therefore conclude that the first variant will be faster when traces are shorter,
while the other one will be always faster for “reasonably” long traces. We can also observe
that, when the log size is fixed, the speed-up grows most quadratically with respect to the
maximum trace length.

Supplement III Maximal Common Subset Problem

In order to minimise union and intersection operations over a sequence of atoms, we
had to solve multiple times the MAXIMAL COMMON SUBSET PROBLEM23. This problem,
different from the maximal common subsequence for sequences (e.g., strings) [61], can be
stated as follows:

22 A+B
A+C > 1 ↔ B > C ↔ B

C > 1 when A + B > 0, A + C > 0, and A > 0 are always true.
23 This problem was coded as the partition_sets function in https://github.com/datagram-db/knobab/blob/

main/include/yaucl/structures/set_operations.h.
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Algorithm S1 xtLTLf pseudocode implementation for derived operators, First Variant
1: function TIMEDANDFUTURE1

Θ(ρ, ρ′)
2: it ←Iterator(ρ), it′ ←Iterator(ρ′)
3: while it ̸=↑ and it′ ̸=↑ do
4: ⟨t, e, L⟩ ← current(it), ⟨t′, e′′, λ⟩ ← current(it′)
5: if t = t′ and e ≥ e′′ then
6: L′′ ← ∅; hasMatch← Θ = True
7: it′∗ ← it′

8: while it′∗ ̸=↑ do
9: ⟨t′, e′, L′⟩ ← current(it′∗);

10: if t′ ̸= t then break;
11: tmp ← T E,i

Θ (L, L′) ▷ Algorithm 7
12: if tmp ̸= False then
13: hasMatch← true; L′′ ← L′′ ∪ tmp
14: end if
15: next(it′∗)
16: end while
17: if hasMatch then yield ⟨t, e, L′′⟩;
18: next(it); next(it′);
19: else if t < t′ or (t = t′ and e < e′) then
20: next(it)
21: else
22: next(it′)
23: end if
24: end while

25: function TIMEDANDGLOBALLY1
Θ(ρ, ρ′)

26: it ←Iterator(ρ), it′ ←Iterator(ρ′)
27: while it ̸=↑ and it′ ̸=↑ do
28: ⟨t, e, L⟩ ← current(it), ⟨t′, e′′, λ⟩ ← current(it′)
29: if t = t′ and e = e′′ then
30: L′′ ← ∅; hasMatch← Θ = True; count← 0
31: it′∗ ← it′

32: while it′∗ ̸=↑ do
33: ⟨t′, e′, L′⟩ ← current(it′∗)
34: if t′ ̸= t then break;
35: tmp ← T E,i

Θ (L, L′) ▷ Algorithm 7
36: if tmp ̸= False then
37: hasMatch← true; L′′ ← L′′ ∪ tmp; count←count+1
38: end if
39: next(it′∗)
40: end while
41: if hasMatch and count= |σt|− e + 1 then yield ⟨t, e, L′′⟩;
42: next(it); next(it′);
43: else if t < t′ or (t = t′ and e < e′) then
44: next(it)
45: else
46: next(it′)
47: end if
48: end while

Problem S1. Given a set of sets S = { S1, . . . , Sn }, we want to compute the maximal common sub-
sets ∆ = { δ1, . . . , δk } so that each set Sι ∈ S can be defined as the union of some pairwise disjoint
sets δι1 , . . . , διm in ∆. This decomposition has to guarantee that there exists no other decomposition
containing non-overlapping supersets of the sets given in ∆ providing such decomposition.

Please observe that, if all of the sets in S are pairwise disjoint, then S = ∆.

Example S1. Given S = { {1, 2, 3}, {2, 3}, {4, 5}, {1, 2, 3, 4, 5}, {2, 3, 4, 5} }, we obtain the
maximal common subsets ∆ = { {2, 3}, {1}, {4, 5} }. Given this, we might characterize the sets in
S from the constituents in ∆, and therefore decomposition returned by the MAXIMALCOMMON-
SUBSET function allows the characterization of S as { δ2 ∪ δ1, δ1, δ3, δ2 ∪ δ1 ∪ δ3, δ1 ∪ δ3 } via
the returned decomposition I .

Algorithm S3 sketches a solution to the maximal common subsets problem: by re-
membering the sets Si in which each set item is contained (Line 4) and by subsequently
remembering the items that are shared among the sets in S (Line 7), the latter map identifies
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Algorithm S2 xtLTLf pseudocode implementation for derived operators, Second Variant
1: function TIMEDANDFUTURE2

Θ(ρ, ρ′)
2: if ρ′ = ∅ then return ∅ ▷ Yielding no records
3: it ←Iterator(ρ), it′ ←Iterator(ρ′)
4: while it ̸=↑ do
5: toBeReversed← ∅; ⟨ic, jc, L⟩ ← current(it); ⟨i′, j′, L′⟩ ← current(it′)
6: if ic > i′ or (i = i′ and jc > j′) then
7: it’←LOWERBOUND(ρ, it′, ↑, ⟨ic, jc,⊤Ω⟩); if it′ =↑ break
8: else if i < i′ then
9: it←LOWERBOUND(ρ, it, ↑, ⟨i′, 1,⊤Ω⟩);

10: else
11: if it′ =↑ break; tmp← ∅
12: bend← UPPERBOUND(ρ′, it′, ↑, ⟨i′, |σi′ |+ 1,⊤Ω⟩); aend← UPPERBOUND(ρ, it, ↑, ⟨ic, |σic |+ 1,⊤Ω⟩)
13: if current(it′ − 1).i ̸= i then
14: it←aend;
15: while(it ̸=↑) and current(it).i = i do it++
16: continue
17: end if
18: it←--bend; it’←--aend; ⟨i, j, L⟩ ← current(it); ⟨i′, j′, L′⟩ ← current(it′)
19: for J ← j′ downto 1 by 1 do
20: if bend≥it’ and J = j′ then
21: tmp← tmp ∪ L′; it’--; ⟨i′, j′, L′⟩ ← current(it′)
22: end if
23: while i = i′ and j > j′ do
24: aend--; ⟨i, j, L⟩ ← current(it).
25: end while
26: if i ̸= i′ then break
27: if j < jc or j < J then continue
28: tmp ← T E,i

Θ (L, L′) ▷ Algorithm 7
29: if tmp ̸= False then toBeReversed.add(⟨i, j, tmp⟩)
30: end for
31: forall ⟨i, j, L′′⟩ ∈ REVERSED(toBeReversed) do yield ⟨i, j, L′′⟩
32: it← aend; if it′ =↑ then break;
33: end if
34: end while

35: function TIMEDANDGLOBALLY2
Θ(ρ, ρ′)

36: if ρ′ = ∅ then return ∅ ▷ Yielding no records
37: it ←Iterator(ρ), it′ ←Iterator(ρ′)
38: while it ̸=↑ do
39: toBeReversed← ∅; ⟨i, j, L⟩ ← current(it); ⟨i′, j′, L′⟩ ← current(it′)
40: if i > i′ or (i = i′ and j > j′) then
41: it++; if it′ =↑ break
42: else
43: if it′ =↑ break; tmp← ∅
44: bend← UPPERBOUND(ρ′, it′, ↑, ⟨i′, |σi′ |+ 1,⊤Ω⟩); aend← UPPERBOUND(ρ, it, ↑, ⟨i, |σi|+ 1,⊤Ω⟩)
45: it←--bend; it’←--aend; ⟨i, j, L⟩ ← current(it); ⟨i′, j′, L′⟩ ← current(it′)
46: J ← j′

47: for J ← j′ downto 1 by 1 do
48: if bend≥it’ and DISTANCE(it’,bend)= |σi′ |− J + 1 then
49: tmp← tmp ∪ L′; it’--; ⟨i′, j′, L′⟩ ← current(it′)
50: else break
51: end if
52: while i = i′ and j > j′ do
53: it--; ⟨i, j, L⟩ ← current(it).
54: end while
55: if i ̸= i′ then break
56: if j < J then continue
57: tmp ← T E,i

Θ (L, L′) ▷ Algorithm 7
58: if tmp ̸= False then toBeReversed.add(⟨i, j, tmp⟩)
59: end for
60: forall ⟨i, j, L′′⟩ ∈ REVERSED(toBeReversed) do yield ⟨i, j, L′′⟩
61: it←aend; if it′ =↑ then break
62: end if
63: end while

the desired maximal common subsets. Therefore, each set Sι can be defined through the
union of the maximal common subsets δk ∈ ∆ (Line 10).

The primary aim of this algorithm in KnoBAB is to minimize the computations of Or
or And operators where the computation of further intermediate subsets is appropriate.
As we might indeed see from the former example, the reconstruction of the original sets
in S from their constituents in ∆ implies evaluating the same unions multiple times, e.g.
δ2 ∪ δ1 and δ1 ∪ δ3. This overhead can be limited as follows: first, we might sort the
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Algorithm S3 Maximal Common Subsets

1: function MAXIMALCOMMONSUBSET(S)
2: setsToSharedValues← {}; itemInSets ← {}; I ← {}; k ← 1; ∆ ← ∅
3: for all Si ∈ S and item ∈ Si do
4: itemInSets[item].put(i)
5: end for
6: for all ⟨item, {i, j, . . . }⟩ ∈itemInSets do
7: setsToSharedValues[{i, j, . . . }].put(item) ▷ item∈ Si ∩ Sj ∩ . . .
8: end for
9: for all ⟨{i, j, . . . }, {itemα, itemβ, . . . }⟩ ∈setsToSharedValues and ι ∈ {i, j, . . . } do

10: I [ι].put(k) ▷ δk ⊆ Sι, Sι ∈ S
11: ∆.put({itemα, itemβ, . . . }) ▷ δk = {itemα, itemβ, . . . }
12: k ← k + 1
13: end for
14: return ⟨∆, I⟩

15: function MCSREFINEMENT(∆, I)
16: ∆′ ← ∅; k ← |∆|+ 1; elemMap ← {}
17: SORT(I , (⟨s, I⟩ , ⟨s′, I′⟩) → I ⊆ I′ )
18: for all ⟨s, I⟩i ∈ I from i = 1 to |I| s.t. |I| ̸= 1 do
19: hasElem ← False;
20: for all ⟨s′, I′⟩j ∈ I from j = |I|− 1 to i + 1 s.t. |I′| ̸= 1 do
21: if |I| = |I′| then break
22: else if I ⊆ I′ then
23: if not hasElem then
24: hasElem ← True
25: ∆′.put(I)
26: end if
27: I′ ← I′\I ∪ {k}
28: end if
29: end for
30: if hasElem then
31: elemMap[i] ← k
32: k ← k + 1
33: end if
34: end for
35: return ⟨∆, ∆′, I⟩
36: for all ⟨i, k⟩ ∈ elemMap do
37: I [i] ← {k}
38: end for

decomposed itemsets by their inclusion relationship (Line 17): this is possible as the set of
all possible subsets is a partially ordered set (poset) where the partial order is the subset-
equal relationship [40]. Last, we iterate over all the possible decomposed itemsets I which
do not appear as a singleton, as their replacement is trivial (Line 18): if the decomposition I′

for a set Sj contains the decomposition I for a set Si, we can elect I as a new refined subset
δk (Line 25) which is now a component for I′ (Line 27).

Example S2. Let us continue the former example: the refinement step computes a new refinement
δ4 ∈ ∆′ which is defined as δ1 ∪ δ2; the characterization of S has now become {δ4, δ1, δ3, δ4 ∪
δ3, δ1 ∪ δ3}.

Example S3. Let us now suppose to have an array of sets containing xtLTLf formulæS =
{ {ψ1, ψ2, ψ3}, {ψ2, ψ3}, {ψ4, ψ5}, {ψ1, ψ2, ψ3, ψ4, ψ5}, {ψ2, ψ3, ψ4, ψ5} }, where we want to ex-
press each set in S as a timed disjunction Orτ

True formulæ. While doing so, we want also to
minimise as possible the computation of unions that are shared among different sets. Figure S1
shows the desired result, where ∆ and ∆′ contain the intermediate untimed unions or just one
single xtLTLf formula, while S will contain the nodes that will perform the final union operations.
FINITARYSETOPERATIONS(S , OrTrue) returns the desired xtLTLf DAG in Figure S1, rooted in
each distinct formula associated to a set in S .

Time Complexity. For MAXIMALCOMMONSUBSET, if we assume that each subset is
at most of size m, then the time complexity of the first loop is in O(|S|m); the second
loop iterates over the whole possible items contained in each set in S , and therefore has a
time complexity of O(|S S|); the last iteration performs a number of iterations which is
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∆:

∆′:

S:

δ1 = OrTrue(ψ2,ψ3) δ2 = ψ1 δ3 = OrTrue(ψ4,ψ5)

δ4 = OrTrue(δ1, δ2)





S2z }| {
OrTrue
2≤i≤3

ψι,

S1z }| {
OrTrue
1≤ι≤3

ψι,

S3z }| {
OrTrue
4≤ι≤5

ψι,

S4z }| {
OrTrue
1≤ι≤5

ψι,

S5z }| {
OrTrue
2≤ι≤5

ψι





Figure S1. Decomposing untimed unions of xtLTLf formulæ into maximal shared sub-expressions
via an abstract syntax DAG, thus attempting at computing each untimed union shared among
different expressions at most once.

Algorithm S4 Finitary set operations for commutative and associative set operations ⊕
1: function FINITARYSETOPERATIONS(S ,

L
) ▷ ⊕ ∈ {S,

T}
2: ∆, I ←MAXIMALCOMMONSUBSETS(S)
3: ∆, ∆′, I ←MCSREFINEMENT(∆, I)
4: for all s′ ∈ ∆′ (parallel) do
5: δs′ ←

L
δι∈∆ δι

6: end for
7: for all ⟨i, D⟩ ∈ I do ▷ Decomposition D of Si through intermediate sets δs with s ∈ D
8: yield ⟨i, L

s∈D δs⟩ ▷ Result associated to Si ∈ S
9: end for

10: function FINITARYSETOPERATIONS(S , Results,
L

) ▷ ⊕ ∈ {S,
T}

11: ∆, I ←MAXIMALCOMMONSUBSETS(S)
12: ∆, ∆′, I ←MCSREFINEMENT(∆, I)
13: for all s ∈ ∆ (parallel) do
14: δs ←

L
ι∈s Results[ι]

15: end for
16: for all s′ ∈ ∆′ (parallel) do
17: δs′ ←

L
ι∈s′ δι

18: end for
19: for all ⟨i, D⟩ ∈ I do ▷ Decomposition D of Si through intermediate sets δs ∈ ∆ ∪ ∆′

20: yield ⟨i, L
s∈D δs⟩

21: end for

comparable to the size of ∆ which, in the worst-case scenario, is composed of singletons of
size k = 1 comprising elements from

S S , and therefore has a time complexity in O(|S S|).
We also assume that all the insertion operations can be performed in O(1) time, as all the
data structures that might be exploited are either hash maps or vectors. Overall, this makes
a worst case scenario time complexity of O(|S|m + |S S|).

In MCSREFINEMENT, as checking the subset relationship among itemsets has at most a
cost proportional to the size k of each itemset, this makes such sorting O(|S S| log(|S S|))
when k = 1 and O(|S S| log(c)) when k = |S S|/c for c constant; so, even in this scenario,
we have the worst case scenario computational complexity for k = 1. Last, in the worst case
scenario, the double for loop has a computational complexity comparable to O(|S|2), as
we perform an iteration over all the possible characterizations of the sets in S while trying
to aggregate the remaining shared union operations further.

The overall time complexity of both phases becomes O(|S|(m+ |S|)+ |S S| log(|S S|)).

Supplement III.1 Use Case: Running AtomL,τ
A/T operators

This subsection describes how efficiently computing the results associated to the
AtomL,τ

A/T operator also requires the computation of the MAXIMALCOMMONSUBSET prob-

lem. This is achieved not only by performing all the CompoundL,τ
A/T queries to be run on the

same AttributeTablek
L in one single scan of the former but by also running the final result

associated to the AtomL,τ
A/T by computing the shared intersections among different atoms’

definition at most once. This detailed pseudocode is shown in Algorithm S5.
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Algorithm S5 Query Plan Initialisation and Execution for Dφ-encoding pi atoms.
1: global keyToLabelToSortedIntervals ← {};SΣ ← {}; Results ← {}; Cache ← {}

2: procedure EXECUTERANGEQUERIES(L)
3: for all ⟨κ, map⟩ ∈ keyToLabelToSortedIntervals do
4: if table AttributeTableκ

L not exists then continue
5: for all ⟨a, L⟩ ∈ map (parallel) do
6: if ∃ ⟨beg, end⟩ . ⟨beg, end⟩ ∈ AttributeTableκ

L.primary_index[β(a)] then
7: SORT(L)
8: for all ⟨lowκ ≤ κ ≤ upκ , idx⟩ ∈ L do ▷ Computing CompoundL,τ

? (a, κ, [lowκ , upκ ])
9: beg ← LOWERBOUND(AttributeTableκ

L, beg, lowκ , end)
10: mid ← UPPERBOUND(AttributeTableκ

L, beg, upκ , end)
11: while beg<mid and beg<end do
12: i, j ← ActivityTableL[AttributeTableκ

L[beg](Offset)](Trace, Event)
13: Results[idx].put(⟨i, j⟩)
14: beg++;
15: end while
16: beg ← mid; SORT(Results[idx])
17: if beg ≥ end then break
18: end for
19: end if
20: end for
21: end for

22: procedure RUNDφ-ENCODINGATOMS(L)
23: EXECUTERANGEQUERIES(L)
24: for all ⟨pi, Result⟩ ∈FINITARYSETOPERATIONS(SΣ, Results,

T
) do ▷ Algorithm S4

25: Cache[pi] ← Result
26: end for
27: SΣ ← {}; Results ← {}; keyToLabelToSortedIntervals ← {}

28: function A(AtomL,τ
· )(ψ) ▷ require ψ.atom = {pι} with pι from the Dφ-encoding pipeline

29: if ψ.isActivation then ▷ AtomL,τ
A (pι)

30: return { ⟨i, j, {A(j)}⟩ | ⟨i, j⟩ ∈ Cache[pι] }
31: else if ψ.isTarget then ▷ AtomL,τ

T (pι)
32: return { ⟨i, j, {T(j)}⟩ | ⟨i, j⟩ ∈ Cache[pι] }
33: else ▷ AtomL,τ(pι)
34: return { ⟨i, j, ∅⟩ | ⟨i, j⟩ ∈ Cache[pι] }
35: end if

First, we evaluate each compound condition over the AttributeTablek
L, as each atom is a

conjunction of interval queries expressed as compound conditions. As the query compiler
grouped such intervals by AttributeTablek

L and associated activity labels by calling the
RETRIEVEINTERVALS method in the keyToLabelToSortedIntervals map, we now need to
iterate over such a map and access the AttributeTableκ

L for each key κ appearing in it (Line 4).
Each AttributeTablek

L is then accessed by activity label a through its primary index (Line 6):
if the primary index points to a specific region in the table delimited by a beginning and
end table offset, we can access it and query it via the sorted compound condition. For
each of those (representing elementary intervals), we get the offset beg (and end) to the first
element within the block equal or greater to the lower bound lowκ (or strictly greater to the
upper bound upκ). Such bounds are returned in Lines 9 and 10. For each record existing in
such a range, we reconstruct the trace and event id containing the desired value (Line 12)
and then store it into a preliminary result24 (Line 13). As both the elementary intervals and
the table are sorted in ascending order by value and given that each elementary interval is
non-overlapping by construction, we can query the next interval in L from the remaining
portion of the table, thus steadily reducing the table visiting cost by further reducing
the data over which the scan is performed. As these results are not sorted by increasing
trace and event id rather than by increasing value in V, we have to sort them accordingly
(Line 16) to be compatible with the intermediate results ρ requirements. Please observe
that despite each of these intervals could appear in the definition of multiple atoms, this
construction guarantees that each of these queries is performed at most once per occurring
interval.

24 Please observe: not the intermediate representation ρ!
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Second, we can compute the events associated with each pi atom returned from the
Dφ-encoding pipeline by intersecting the result associated with each of the intervals. The
result of such intersections is then stored in an intermediate cache (Line 25). We can perform
these intersections efficiently by guaranteeing the computation of each sub-intersection
shared across different atoms at most once through the calculation of maximal common
subsets occurring in intersections’ sub-expressions.

Third, while evaluating each atom from our scheduled operator in ψ (Line 7 from
Algorithm 6), we can retrieve the result from the cache and, dependingly on whether this
expression was associated to an activation (Line 29 from Algorithm S5), a target condition
(Line 31), or neither of these (Line 34), we can now effectively represent the result as an
intermediate result with the appropriate label markers in L.

Example S4. The lowermost boxes from Figure S2 represent the compound conditions extracted
from the atoms appearing on the leaf nodes of the query plan, as well as their associated result stored in

“Results” after running the EXECUTERANGEQUERIES. Their connection with the corresponding
atoms could be tracked by navigating the edges backwards. The result of the intersection between
all of the possible compound conditions as per atom definitions is then computed in the for loop in
RUNDφ-ENCODINGATOMS. At this point, the execution of the leaf nodes on the query plan boils
down to accessing the upper nodes in the box above and converting such results according to the
activation or target condition associated with them. This mechanism guarantees that the results and
the tables are accessed at most once, independently from the activation/target mark associated with
the atom nodes.

Supplement IV Data And Models

We wanted to test our claim that exploiting data access minimisation techniques to
can quicken conformance checking as well as model mining time. In addition, we want to
prove that even in the worst-case scenario, we still achieve orders of magnitude of gains
versus state-of the art solutions. Therefore, we provide two models, Table S2 and Table S1a
(also available at 17). The former was adapted from Burattin et al. [6], where we exploited
the constraints they provided, allowing for a direct comparison. These tables are displayed
under the assumption from [6], where the trace payloads are injected into every event.
In our actual implementation, we inject a __trace_payloadevent at the beginning every
trace. Therefore, M11 from Table S1a has a KnoBAB representation as Table S1b, where the
resulting model size is five (seven) for Burattin (KnoBAB).

By performing conjunctions among these, we were able to provide 11 models, the
largest consisting of five (seven, due to trace payload injection) clauses. The queries
constructing these larger models are similar, for example, even the model q1 ∧ q2 hold
the clause Response(A_SUBMITTED,true,A_ACCEPTED,true) twice. These clauses need not be
duplicated in the query plan, and therefore these models should better demonstrate the
gains from data access minimisation. Conversely, Table S1a denotes an entirely novel model,
that avoids similar queries. With each sub-model, entirely new events are considered, and
even within those payload conditions vary. As such, our pipeline can gain much less from
DAG optimization techniques. This model, therefore, provides a more appropriate case for
analysing these proposed enhancements.
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Table S1. Worst-case scenario (SCENARIO 1) model representation for the BPIC_2012 dataset.

(a) Clause constituents of each model, where each sub-model is guaranteed to be a subset of the
larger.

Model Clauses

M1 =





q1 := Response(A_SUBMITTED, true, A_ACCEPTED, true)
q2 := Response(A_SUBMITTED, AMOUNT_REQ ≥ 103, A_ACCEPTED, true)
q3 := Response(A_SUBMITTED, AMOUNT_REQ < 103, A_ACCEPTED, true)
q4 := q1 where A_SUBMITTED.org:resource = A_ACCEPTED.org:resource
q5 := q1 where A_SUBMITTED.org:resource ̸= A_ACCEPTED.org:resource

M2 = M1+





q6 := Response(W_Completeren aanvraag, true, W_Valideren aanvraag, true)
q7 := Response(W_Completeren aanvraag, true, O_CANCELLED, true)
q8 := q6 where W_Valideren aanvraag.org:resource ̸= W_Valideren aanvraag.org:resource
q9 := Response(W_Valideren aanvraag, AMOUNT_REQ = 5 · 103, O_CANCELLED, true)
q10 := q9 where W_Valideren aanvraag.org:resource = O_CANCELLED.org:resource

M3 = M2+





q11 := Response(O_SELECTED, true, O_CANCELLED, true)
q12 := q11 where O_SELECTED.org:resource = O_CANCELLED.org:resource
q13 := Response(O_SELECTED, AMOUNT_REQ < 8 · 103, O_CANCELLED, true)
q14 := q13 where O_SELECTED.org:resource = O_CANCELLED.org:resource
q15 := Response(O_SELECTED, AMOUNT_REQ > 103, O_CANCELLED, true)

where O_SELECTED.org:resource ̸= O_CANCELLED.org:resource

M4 = M3+





q16 := Response(A_PARTLYSUBMITTED, true, A_DECLINED, true)
q17 := q16 where A_PARTLYSUBMITTED.org:resource = A_DECLINED.org:resource
q18 := Response(A_PARTLYSUBMITTED, AMOUNT_REQ > 2 · 104, A_DECLINED, true)
q19 := Response(A_PARTLYSUBMITTED, AMOUNT_REQ > 2 · 104, A_CANCELLED, true)
q20 := q18 where A_PARTLYSUBMITTED.org:resource = A_DECLINED.org:resource

(b) Distinguishing consisting clauses of from Table S2, where [6] must inject the trace payload into
each event.

Clause Declare Analyzer Representation KnoBAB representation

q1 Response(A_SUBMITTED, true, A_ACCEPTED, true) Response(A_SUBMITTED, true, A_ACCEPTED, true)

q2 Response(A_SUBMITTED, AMOUNT_REQ ≥ 103, A_ACCEPTED, true) Response(A_SUBMITTED, true, A_ACCEPTED, true)
Exists(__trace_payload, AMOUNT_REQ ≥ 103,≥ 1)

q3 Response(A_SUBMITTED, AMOUNT_REQ < 103, A_ACCEPTED, true) Response(A_SUBMITTED, true, A_ACCEPTED, true)
Exists(__trace_payload, AMOUNT_REQ < 103,≥ 1)

q4 Response(A_SUBMITTED, true, A_ACCEPTED, true) Response(A_SUBMITTED, true, A_ACCEPTED, true)
where A_SUBMITTED.org:resource = A_ACCEPTED.org:resource where A_SUBMITTED.org:resource = A_ACCEPTED.org:resource

q5 Response(A_SUBMITTED, true, A_ACCEPTED, true) Response(A_SUBMITTED, true, A_ACCEPTED, true)
where A_SUBMITTED.org:resource ̸= A_ACCEPTED.org:resource where A_SUBMITTED.org:resource ̸= A_ACCEPTED.org:resource

Table S2. Declare Models for a data access best-case scenario for the BPIC_2012 dataset. These queries
are performed under the assumption the trace payload has been injected into every event of the trace.

Model Name Conjunctive Query

M1 q1 := Response(A_SUBMITTED, true, A_ACCEPTED, true)
M2 q2 := Response(A_SUBMITTED, AMOUNT_REQ ≥ 103, A_ACCEPTED, true)
M3 q3 := Response(A_SUBMITTED, AMOUNT_REQ < 103, A_ACCEPTED, true)
M4 q4 := q1 where A_SUBMITTED.org:resource = A_ACCEPTED.org:resource
M5 q5 := q1 where A_SUBMITTED.org:resource ̸= A_ACCEPTED.org:resource
M6 q1 ∧ q2
M7 q1 ∧ q2 ∧ q4
M8 q1 ∧ q3 ∧ q4
M9 q1 ∧ q2 ∧ q5

M10 q1 ∧ q3 ∧ q5
M11 q1 ∧ q2 ∧ q3 ∧ q4 ∧ q5


