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Appendix S1. Description of the MISC+REJ cost model and proof of the main results 

underlying the clinical space search algorithm under this model 

 In this work, we present a framework to simultaneously compare the performance of 

multiple pathogenicity predictors in multiple deployment scenarios. The goal is to find which 

predictor is more appropriate for each scenario, or if a single predictor is enough for all 

scenarios. We treat pathogenicity predictors as classifiers with reject option because they have 

an incomplete coverage [1]. Our framework consists of two components. The first component 

is a theoretical body that includes a cost model and a set of propositions forming the foundation 

for the second component, the computational part. This computational part presents a 

procedure that divides the clinical space into regions where a single predictor prevails over the 

others in terms of cost. Here, we present the cost model, and in Sections S1-S3, we explain the 

computational procedure and the theoretical outcomes that support it.  

NOTE. In the main body of the article, for comparison purposes, we present a framework 

based on the split misclassification errors (MISC) only; the reject term is not included. All the 

results about MISC are provided in the article. 

TERMINOLOGY NOTE. We will use the terms ‘classifier’ and ‘predictor’ interchangeably. 

We will also refer to these tools as ‘methods’, particularly in the propositions, to underline the 

generalizability of the results. 

 

 The cost model we use as a starting point is the one used to evaluate classifiers with a 

reject option [2,3], which corresponds to the case of pathogenicity predictors. However, this 

model must be adapted to healthcare applications because of two reasons. First, it treats equally 

misclassification errors due to false positives and false negatives, and this is problematic 

because the medical consequences of these errors may vary substantially [4]. And second, it 

should take into account the frequency of the predicted classes [5–7], i.e., the frequency of 



pathogenic and benign variants, in our case. In the following, we present a version of the cost 

model for reject classifiers (to which we will refer as MISC+REJ) based on these 

considerations (see the underlying probabilistic tree diagram in Supplementary Figure S2). In 

particular, the misclassification error is split into two terms, corresponding to false positive and 

false negative errors, and a parameter for the class probability. The cost model is then written 

as: 

 

    c = αρ(1−se)c0 + α(1-ρ)(1-sp)c1+ (1-α)c2   (SA1) 

  

where the parameters c0 and c1 are the misclassification costs: c0 is the cost associated to 

annotating pathogenic variants as benign, and c1 is the cost associated to annotating benign 

variants as pathogenic. c2 is the cost associated to prediction rejection. In general cost models, 

ρ and 1-ρ are the probabilities of the two predicted classes. In our case, ρ will be the frequency 

of pathogenic variants expected in the deployment context. The value of ρ, comprised between 

0 and 1, varies with the genome region sequenced (gene panel, whole exome, etc.) and with 

the population of individuals tested (e.g., the individuals attending a specific hospital unit, 

ethnic group, etc.). se and sp are the sensitivity and specificity of the pathogenicity predictor; α 

is its coverage (1-α is the rejection rate). These parameters are estimated testing the predictor 

in a set of Ntot variants as follows:  

 

     se = 𝑇𝑇𝑇𝑇
𝑁𝑁𝑝𝑝

              (SA1.1) 

     sp = 𝑇𝑇𝑇𝑇
𝑁𝑁𝑏𝑏

              (SA1.2) 

α = 𝑁𝑁
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

             (SA1.3) 

 



where Ν (N≤Ntot) is the total number of predicted variants; Np, and Nb are the numbers of 

predicted pathogenic and benign variants. We have that: N=Np+Nb. And Ntot-N is the number 

of rejected predictions.   

Following Hernández-Orallo et al. [7], instead of c we will use rc, the normalized 

average cost, which is obtained after dividing both sides of equation (1) by cT (=c0+c1+c2):   

 

    rc = 𝑐𝑐
𝑐𝑐𝑇𝑇

  = αρ(1−se)rc0 + α(1-ρ)(1-sp)rc1+ (1-α)rc2   (SA2) 

 

where rci=ci/cT (i=0,2) are comprised between 0 and 1, and rc0+rc1+rc2=1.   

We can reduce the number of parameters in rc replacing rc2 by 1-rc0-rc1 in equation 

(2). We obtain, after some reordering: 

 

   rc = [αρ(1−se)+α-1]rc0+[α(1-ρ)(1-sp)+α-1]rc1+1-α  (SA3) 

  

rc is defined over a triangular region T in the rc0-rc1 plane, bounded by the axes rc0, rc1 and 

the line rc0+rc1=1 (Figure 3a). T is conceptually equivalent to the interval I=(0,1) in the MISC 

case (see main body of the paper): each point in T corresponds to a clinical scenario. We will 

refer to T as ‘clinical space’ also. I and T differ in that the second is two-dimensional; i.e. 

clinical scenarios are represented by (rc0, rc1) pairs, not by a single value.  

 

Section S1. Generalizing predictor comparison to all clinical scenarios 

 For N predictors, in a clinical scenario defined by a pair (rc0, rc1), the comparison is 

straightforward: we only have to compute and sort their respective rc values. The tool of choice 

will be the one with the lowest rc; it will be the predictor with the lowest MISC+REJ cost. 

Here, the goal is to solve the more complex problem of comparing predictors across the clinical 



space. That is, we want to find a division of this space in regions within which a single predictor 

prevails in terms of cost. The problem is more difficult for MISC+REJ than for MISC because 

the space we want to partition is two-dimensional instead of one-dimensional. To illustrate the 

procedure, we first describe the case of two predictors (N=2) and then we extend the idea to an 

arbitrary number N of predictors.  

Let Mi and Mj be two pathogenicity predictors, and rc(Mi) and rc(Mj) be their respective 

rc’s. We seek a division of T into two regions: ri, where Mi is preferable to Mj (rc(Mi) < rc(Mj)), 

and rj, where the opposite is the case (rc(Mi) > rc(Mj)). The boundary between ri and rj is 

defined by the condition rc(Mi)=rc(Mj), which, using equation (3) for rc(Mi) and rc(Mj), gives:  

 

       {ρ[αi(1−se,i)-αj(1−se,j)]+αi-αj}rc0+{(1-ρ)[αi(1-sp,i)-αj(1-sp,j)]+αi-αj}rc1+αj-αi = 0     (SA4) 

where se,k, sp,k and αk are the sensitivity, specificity and coverage of predictor Mk (k=i,j). 

Equation (4) shows that the boundary sought is a line (Figure 3a), which we will call lij, in the 

rc0-rc1 plane. 

When lij crosses T, it divides it into two convex polygons (Figure 3a), corresponding to 

the ri and rj regions. If lij does not cross T, then only one of the two methods will have the 

lowest rc in all T points.  

 From Equation (4), we see that lij depends on ρ; consequently, different values of this 

parameter may change ri and rj (Supplementary Figure S3). In this appendix we concentrate on 

the problem of dividing T when more than two predictors are available, keeping the value of ρ 

fixed. In the main body of the paper, we describe how different values of ρ affect the resulting 

division. 

 To generalize the comparison to more than two predictors (Mi, i=1,N; N>2), we will 

develop a procedure that divides T into m regions, {rk, k=1,m}, such that only one method per 

region has the lowest rc. (Note that m ≤ N, since there may be predictors that are never better 



than the others). The next two sections are devoted to provide some fundamental results 

underlying this procedure and then to describe it, first in geometric (Section S2) and then in 

computational (Section S3) terms.  

 

Section S2. Dividing T into a set of regions {rk, k=1,m} in which only one predictor per 

region has the lowest rc 

 Note. In our proofs we use several results about convex polygons that can be easily 

found in the books of Lee [8] and of Yaglom and Botyanskii [9]. The most important ones are 

explicitly cited. 

 Here, we address, in geometric terms, the problem of finding the {rk, k=1,m} regions 

in which only one predictor per region has the lowest rc. The starting point is the set of N 

predictors that we want to compare. Previously, we have seen that there is a line associated to 

each pairwise comparison between predictors (Equation (4)). Therefore, after doing all the 

possible M=N.(N-1)/2 pairwise comparisons, we obtain a set LN={lij, i=1,N-1 and j=i+1,N} of 

lines. A first important result (Proposition S1) is that these lines cut T, producing a division of 

this triangle into a set PN of convex polygons that will be key to finding the rk regions.   

 

Proposition S1. Let N𝜖𝜖ℕ be an arbitrary number of methods and let LN={lij, i=1,N-1 and 

j=i+1,N} be the set of lines resulting from all the pairwise comparisons between these methods, 

using rc. These lines cut T into a set PN={pl} of convex polygons.   

 

Proof. By induction. 

Base case. For N=2, there is only one line in LN, since there is only one comparison between 

two methods. When the line contains no interior point of T, either because it does not intersect 

with T, or because it is a supporting line of it, P2 will have a single element, T, which is convex 



because it is a triangle. If the line contains at least a point interior to T, then it will cut T in 

exactly two points [9]. The line segment uniting these two points is a chord of the polygon [8] 

and, by the ‘Polygon Splitting Theorem’ [8], divides T into two convex polygons.  

Induction step. Here we show that if the proposition is true for N, then it is true for N+1. That 

is, we want to show that if LN divides T into a set of convex polygons PN, then LN+1 divides T 

into a new set of convex polygons that we will call PN+1.  

 We know that the set of lines resulting from the comparison of N+1 methods, LN+1, will 

contain the lines corresponding to the comparisons between the first N methods, LN, and 

between these N methods and an additional (N+1)th method, {li,N+1}i=1,N, that is:  

 

     LN+1 = LN U {li,N+1, i=1, N}     (SA5) 

 

Cutting T with the lines in LN+1 is equivalent to cutting it with the lines in LN and then with 

those in {li,N+1, i=1, N} since order is irrelevant to the final result. Therefore, PN+1 will be the 

result of cutting the polygons in PN with the lines in {li,N+1, i=1, N}. When we cut PN with the 

first line, l1,N+1, we create a new division of T in which each of the polygons split by l1,N+1 will 

be replaced by two children polygons (i.e., no polygon traversed by a line remains in the new 

division of T). Next, we will repeat this process for the remaining lines in {li,N+1, i=1, N} until 

we obtain PN+1. At the end of each step, the division of T will be constituted by the set of PN 

polygons unaffected by the li,N+1 line (these polygons are convex because the proposition is 

true for N), and by the children of the affected polygons. Given that the affected polygons are 

convex (again because the proposition is true for N), the children will also be convex, by the 

‘Polygon Splitting Theorem’ [8]. Therefore, at the end of each step, the resulting division of T 

will be constituted by a set of convex polygons and, consequently, PN+1, which is obtained at 

the end of the final step, will be constituted by convex polygons only. QED.  



 

 The polygons in PN have several characteristics that are relevant for the computational 

algorithm used to list them (described in Section S3.3). First, their edges are noncollinear line 

segments that belong either to the LN lines or to the three segments defining T. Second, their 

vertices can be: the T vertices, the intersection points between the LN lines, and the intersection 

points between these lines and the triangle edges. Third, for each LN line, the segment delimited 

by the intersection points of the line with the triangle is formed by a concatenation of edges 

from PN polygons (Supplementary Figure S4). And fourth, the same happens for the three 

segments defining T, which are formed by a concatenation of edges from PN polygons.  

The PN polygons also satisfy the following lemma.  

 

Lemma S1. Let p be a polygon from PN. Then none of its interior points belong to another 

polygon q ∈ PN.  

 

Proof. By contradiction. Let us assume that there exists a polygon p ∈ PN such that one of its 

interior points belongs to q ∈ PN. This point will belong to one of the edges of q. The line from 

LN containing this edge will cut p at two points [9], that is, it will traverse p. This is in 

contradiction with the procedure utilized to generate PN, in which any polygon traversed by a 

line from LN is removed from the polygon list and replaced by the two children polygons. 

Therefore, p does not exist. QED. 

   

 Finally, we will show a key property of the PN polygons, used to build the regions rk. 

 



Proposition S2. Let PN be the set of convex polygons obtained after dividing T using LN, the 

set of lines associated to the pair comparisons between N methods. For each polygon p∈PN, 

the lowest rc value at all its interior points always corresponds to the same method. 

 

Proof. By contradiction. Let us assume that the proposition is not true. That is, that there exists 

a polygon p∈PN with an interior point m such that Mi, the method with the lowest rc value at 

m, is different from Mj, the method with the lowest rc value at the remaining interior points of 

p. Let us consider n, one of these remaining interior points. Then, according to our assumption, 

the rc values of Mi and Mj at m (rcm(Mi) and rcm(Mj), respectively) and at n (rcn(Mi) and rcn(Mj), 

respectively) satisfy the following inequalities: rcm(Mi)<rcm(Mj) and rcn(Mi)>rcn(Mj), 

respectively. This is in contradiction with the fact that the boundary line between Mi and Mj 

does not pass between m and n, because during the construction of PN (Proposition S1) any 

polygon traversed by a line from LN is removed from PN and replaced by the resulting children 

polygons. QED. 

 

 We will say that a method Mk is associated to a polygon p, when Mk has the lowest rc 

value for the interior of p. Note, that Mk will also have the lowest rc value at the line segments 

defining p.  

 The polygons in PN do not necessarily coincide with the rk regions but can be used to 

obtain them using the following procedure. 

 

Step 1. Find the method associated to each polygon. For each polygon in PN we apply the 

next three steps: 

Step 1.1. Compute the average of its vertices, which is a point belonging to the interior 

of the polygon because the polygon is convex.  



Step 1.2. Compute the rc value, at this average point, for each of the N methods.  

Step 1.3. Sort the N methods according to their rc’s at the average point and choose the 

method with the lowest rc value. By Proposition S2, this method prevails (has the 

lowest rc) at all the points interior to the polygon considered. This will be the method 

associated to the polygon. 

  

Step 2. Obtaining the {rk, k=1,m} regions. Each region rk (Supplementary Figure S5) is 

obtained as the union of all polygons associated to the same method, Mk: 

 

      rk = ∪𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 𝑝𝑝𝑖𝑖     (SA6) 

where Ωk are the indexes of the pi polygons in PN for which Mk has the lowest rc value. We 

will say that Mk is the method associated to the region rk.  

 By application of Proposition S2 to the polygons associated to Mk, we know that there 

is only one method associated to each rk. By the same reason, we know that no other region 

contains a point for which Mk is the method with the lowest rc. That is, by construction, there 

are no two regions with the same associated method; therefore, {rk, k=1,m} is the set we are 

looking for.  

 Note. For clarity purposes, in this work we do not explicitly treat the fact that, at the 

boundary between adjacent rk regions, two methods have the same rc value. This fact has no 

impact on the results presented, neither in the finding of the rk regions, nor in computing their 

surfaces, etc.    

 

Section S3. Computational obtention of the PN polygons using an adapted Breadth First 

Search (BFS) 



 As we have seen in the previous section, once we know the polygons in PN it is trivial 

to obtain the rk regions, using (6). Here, we describe how we can obtain these polygons 

computationally. In particular, we show that the problem of finding a PN polygon, in terms of 

its constituting vertices, can be modeled as a graph problem, and solved with an adapted version 

of the BFS algorithm that we will call aBFS. A python implementation of this procedure, CSP-

rej (Clinical Space Partition, rejection), is available at: 

https://github.com/ClinicalTranslationalBioinformatics/clinical_space_partition  

 

 This code reproduces the results presented in this work and allows users to explore other 

combinations of predictors. It must be noted that, when planning comparisons of large numbers 

of predictors, it is preferable to partition the original set of predictors into smaller sets, and run 

the program separately for each set. Then, aggregate the surviving methods from these separate 

runs and execute the program again. This approach will reduce the risk of numerical exceptions 

that appear in geometric computations [10], particularly when working with low ρ values. It 

can be repeated as many times as desired. 

 

Preliminary results: computing the set of edges and vertices of the PN polygons 

The first step in our approach is to compute the set of lines LN={lij, i=1,N-1 and 

j=i+1,N}, applying equation (4) to all possible comparisons between the N methods.  

The next step is to build VP and EP, the sets of vertices and edges, respectively, of the 

PN polygons. For VP, we first compute the intersection between the lines in LN, keeping only 

the points falling inside T. These points are included in VP. Then, we compute the intersection 

between the lines in LN and the boundaries of T. The resulting points are added to VP. Finally, 

we include in VP the three vertices of T. The resulting set of vertices is used to obtain EP, 

which is constituted by all the vivj����� (vi, vj ∈ VP) line segments uniting two consecutive vertices 



in an LN line or in the lines defining T. Note that every element of EP corresponds to the edge 

of a PN polygon, as shown in the next lemma.  

 

Lemma S2. Any segment in EP is the edge of at least one polygon in PN. 

 

Proof.  By contradiction. We assume that there exists a segment vivj����� ∈ EP which is not the 

edge of any PN polygon. In the following, we show that the possible options for vivj����� lead to a 

contradiction. 

 By construction of EP, vivj����� belongs either to one of the lines in LN, or to one of the three 

lines defining T. In all cases, within T these lines are formed by a concatenation of edges from 

polygons in PN (Supplementary Figure S4). Therefore, vivj����� will overlap with some of these 

edges. Two situations are possible. It may happen that vivj����� spreads over two or more edges. In 

this case, some of the vertices of these edges will be comprised between vi and vj, in 

contradiction with the fact that vi and vj are consecutive. A second possibility is that vivj����� ⊊ 

vkvl�����, where vkvl����� is one of the edges in the line. This in contradiction with the fact that vk and vl 

are consecutive. Consequently, vivj����� must be an edge of a PN polygon. QED.  

 

Before describing how we obtain the PN polygons, we need to prove a result about 

polygons sharing more than one edge that will be used to prove our computational procedure.  

 

Proposition S3. Let p ∈ PN be a polygon with two edges vivj�����, vivk����� ∈ EP forming a consecutive 

angle (Supplementary Figure S6). There exists no other convex polygon q, different from p, 

with vivj����� and vivk����� among its edges and the remaining edges belonging to EP, and such that 

none of its interior points belongs to another polygon in PN.  



 

Proof. By contradiction. We will assume that q exists and explore the different possibilities 

that arise, showing that they all lead to contradiction. In particular, we will focus our reasoning 

on the relative position of the points in p and q outside vivj����� and vivk�����. There are three 

possibilities, considering that both p and q are convex. 

 If in q these points are all interior to p, then the edges of q joining vj and vk will be 

interior to p (Supplementary Figure 7a). Because, these edges belong to EP, they then 

necessarily belong to polygons in PN (by Lemma S2). This is in contradiction with the fact that 

none of the interior points of p belong to another PN polygon (by Lemma S1).  

 If all the points in p outside vivj����� and vivk����� are interior to q (Supplementary Figure S7b) 

then there are interior points of q will belonging to a polygon in PN, because p ∈ PN. This is in 

contradiction with the definition of q as having no interior points from PN polygons. 

 Finally, we reach a similar contradiction when both p and q have interior points from 

each another (in this case, the points may come from full segments or fragments of segments) 

(Supplementary Figure S7c). QED. 

 

Building PN with a graph-based approach  

The list of polygons in PN can be obtained looping through all the vertices in VP, 

enumerating the polygons that meet at each vertex. Here, we show that we can model this 

polygon enumeration problem as a cycle enumeration problem in graph theory.  

Our starting point is the unweighted, undirected graph G(V, E), whose set of vertices, 

V, and edges, E, correspond to VP and EP, respectively. Because the list of vertices of a 

polygon is formally equivalent to that of a cycle, we can reformulate the original looping 

through VP elements as a looping through V elements. The lists of vertices of the PN polygons 

meeting at a given vertex will now correspond to cycles in G(V, E).  



 In this search, for each vi ∈ V, we will use BFS as a shortest cycle generator, keeping 

only those cycles satisfying the following conditions: 

• C1. A cycle cannot have more than one edge corresponding to a segment from the same 

line. This rule is applied to eliminate those sequences of edges produced by the BFS 

that do not correspond to convex polygons, according to the edge-line lemma [8]. Also, 

to avoid that edges from collinear segments are included.  

• C2. A cycle cannot have repeated vertices, except the first and the last one, as in 

polygons all the vertices are different except the first and the last one [8].  

• C3. Every edge in E has a counter that is decreased by one each time it is included in a 

cycle. Once the counter reaches zero, the edge is excluded from future searches. The 

starting value of the counter of each E edge depends on the location of its equivalent 

edge in EP. If the latter belongs to a side of the triangle, the counter will start at 1; 

otherwise (when it belongs to a line in LN) it will start at 2. This condition guarantees 

that, for each edge in EP, we enumerate all the polygons sharing it, thus ensuring, 

together with C4, that our polygon enumeration procedure is exhaustive for PN 

elements. 

• C4. Every vertex in V has a counter that is decreased by one each time it is included in 

a cycle. Once the counter reaches zero, the vertex is excluded from future searches. The 

starting value of the counter of each V vertex depends on the environment of its 

equivalent vertex in VP. More precisely, it depends on the number and origin of EP 

edges that include the VP vertex (see Supplementary Figure S8). This condition 

guarantees that, for each vertex, we enumerate all the polygons sharing it, thus ensuring, 

together with C3, that our polygon enumeration procedure is exhaustive for PN 

elements. 



• C5. Once a minimal cycle is found, it is excluded from future searches. This condition 

is introduced to avoid repetitions in the final list of cycles. 

• C6. For every minimal cycle found, we check that the corresponding polygon has no 

interior points corresponding to vertices in VP. This condition, together with C7, 

prevents the inclusion in the final list of cycles of convex polygons not belonging to PN 

(see Lemma S3 and Proposition S4 below). 

• C7. For every minimal cycle found, we compute all the possible chords between the 

vertices of the corresponding polygon. If any of these chords corresponds to an edge in 

EP, the polygon is discarded. This condition excludes cycles with a list of vertices in 

which more than two vertices from the same line are included, thus limiting the chosen 

cycles to those corresponding to convex polygons (all pairs of non-adjacent edges of 

the chosen polygon are semiparallel and, by Theorem 8.7 in Lee, the polygon is 

convex). Condition C7, together with C6, also prevents the inclusion, in the final list of 

cycles, of convex polygons not belonging to PN (see Lemma S3 and Proposition S4 

below).  

 

As mentioned above, we call aBFS this combination of BFS and C1-C7 conditions. We 

will now establish (Lemma S3 and Proposition S4) that a cycle found with aBFS corresponds 

to a polygon in PN. 

 

Lemma S3. Let cSC be a cycle found by aBFS, and constituted by the sequence of edges {vi, 

vi+1} ∈ E, where i=1,N and v1=vN+1. Then, psc, the corresponding sequence of segments vivi+1������� 

from EP, is a convex polygon and has no interior points from any polygon in PN.  

 



Proof. cSC is a cycle whose sequence of edges correspond to a sequence of segments, from EP, 

characteristic of a polygon [8]: it starts and ends at the same vertex, there are no collinear 

segments (condition C1), and it has not repeated vertices (condition C2) other than the first and 

last ones, which are equal.  

 psc is convex because of conditions C1 and C7. 

 psc has no interior points from any polygon in PN because of conditions C6 and C7. 

QED. 

 

Proposition S4. Let cSC be a Shortest Cycle identified by aBFS. Then, pSC, the polygon 

corresponding to this cycle, belongs to PN.  

 

Proof. First, we know from Lemma S3 that psc is a convex polygon with no interior points from 

any polygon in PN. Now, let us select an arbitrary pair of adjacent edges from psc, vivj����� and vivk�����. 

By construction of EP, vivj����� and vivk����� are edges of polygons in PN (Lemma S2). Because no line 

from LN passes between them (by conditions C6 and C7), vivj����� and vivk����� belong to the same 

polygon p ∈ PN. From Proposition S3 we know that p is the only convex polygon with vivj����� and 

vivk����� among its edges and no interior points from any polygon in PN, therefore, pSC = p and psc 

∈ PN. QED. 

 

 For each vertex vi, aBFS will find the shortest cycles corresponding to all the vivj�����, vivk����� 

pairs forming consecutive angles. This procedure will be repeated for all the vertices in G(V, 

E), guaranteeing, through the use of counters (conditions C3 and C4 above), that the number 

of cycles found matches that of expected PN polygons. By condition C5 and Proposition S4, 

we know that the shortest cycles found are unique and correspond to PN polygons, respectively. 



In summary, exhaustive application of aBFS to the vertices in E will produce the list of 

polygons in PN. Each polygon will be defined by its list of vertices. 

 
Supplementary Figures 

 

Supplementary Figure SA1. Comparison between the MCC ranking of the seventeen 

pathogenicity predictors and their corresponding fractions of cost scenarios. In all the 

parts of this figure (a-d), pathogenicity predictors are ranked according to their MCC (grey 

bars, left side) and fraction of cost scenarios for which each predictor is optimal are represented 

with pink bars, right side. The results are shown for ρ=0.5 and ρ=0.001). A, MISC analysis of 

the seventeen predictors. B, MISC+REJ analysis of the seventeen predictors. These figures are 

equivalent to those shown in Figs. 1b and 3d, respectively, for AUC. We have reproduced the 

MCC analysis using data for the TP53 gene and several predictors, retrieved from the work of 

Fortuno et al. [11]: C, MISC analysis, and D, MISC+REJ analysis. Here the cost space is 



restricted to the Li-Fraumeni syndrome. The results confirm an incomplete correspondence 

between the MCC analysis and the fraction of cost scenarios in which each method 

predominates. 

 

Supplementary Figure S2. Probabilistic tree diagram underlying the cost-framework 

presented in this work. Each branch of the tree corresponds to a different situation in the use 

of prediction methods, the situation's probability is written by its side. Multiplying probabilities 

along branches gives the probability of an event that is the combination of different situations. 

For example, a pathogenic variant can be incorrectly predicted as benign; the probability of 

this event is: ρ.α.(1-se). In the cost model MISC+REJ each of these events will contribute a 

term (shown to the right of the vertical line) that, after summation and reordering, will result 

in equation (1).



 

Supplementary Figure S3. Effect of the fraction of pathogenic variants in the sample (ρ) 

on the distribution of pathogenicity predictors over the cost domain. This figure shows 

how different values of ρ (a, ρ = 0.5; b, ρ = 0.3; c, ρ = 0.1) may substantially alter the size of 

the cost region assigned to each predictor. A version of this figure for the case of seventeen 

predictors is presented in Figure 4. 

 

  



 

Supplementary Figure S4. Lines from LN are constituted by a concatenation of edges from 

PN polygons, when crossing the triangle T. The figure shows how a line 𝑙𝑙 ∈ LN is formed by 

a succession of segments that correspond to edges of PN polygons (pink/blue), when traversing 

the triangle T, i.e., between the points vr and vs. As illustrated for vivj�����, each segment is shared 

by two polygons, one above (pink) and the other below (blue) the segment.  

 

  



 

Supplementary Figure S5. From polygons to regions. Unification of the polygons in which 

the same method has the lowest average cost (a, shown in red) results in a more simplified 

view of the regions assigned to each predictor (b). 

  



 

 

 

Supplementary Figure S6. Illustration of the consecutive angle formed by vertices vi, vj, 

and vk.  

 

  



 

 

 

Supplementary Figure S7. Different situations for the relative location of polygons p and 

q. a, all the points in q are interior to p; b, all the points in p are interior to q; and c, both p and 

q have interior points from the other.  

 

 

  



 

 

Supplementary Figure S8. Initial values of the counter of each vertex. In the three figures, 

thick grey lines correspond to the edges of the triangle T (the clinical space, see Appendix 1, 

Supplementary Materials), and thin grey lines correspond to the lines dividing T and associated 

with the different pair comparisons between methods. a, The vertex is one of the three triangle 

vertices. b, The vertex is the intersection between a triangle edge and the line associated with 

the comparison between two predictors. c, The vertex is the intersection between the lines 

associated to two different pair comparisons between predictors. 

 

  



Supplementary Tables 

Supplementary Table S1. The seventeen pathogenicity predictors used in this work. We 

provide the performance parameters required for the cost computations: sensitivity, specificity 

and coverage/reject rate. The column Output homogenization shows the correspondence 

between our pathogenic/benign states and the output of each predictor. We also list the decision 

cutoff when it was not provided by dbNSFP. 

Predictor Sensitivity Specificity Coverage/Reject 
rate 

Output 
homogenization & 

decision cutoff 

CADD 1 0.68 1/0 
P >= 15 
B < 15 

EVE 0.92 0.85 0.43/0.57 
P = Pathogenic 
B = Benign 

LRT 0.87 0.76 0.87/0.13 P = Deleterious  
B = Neutral  

MetaLR 0.87 0.88 0.99/0.01 
P = Deleterious  
B = Tolerated  

MetaSVM 0.9 0.89 0.99/0.01 
P = Deleterious  
B = Tolerated  

MutPred 0.95 0.87 1/0 
P >= 0.5 
B < 0.5  

MutationAssessor 0.89 0.77 0.86/0.14 P = High, Medium  
B = Low, Neutral  

MutationTaster 0.98 0.74 0.99/0.01 

P = Disease causing 
automatic, disease 
causing  
B = Polymorphism, 
polymorphism 
automatic  

PMut 0.84 0.87 0.85/0.15 
P = Disease  
B = Neutral  

PON-P2 0.96 0.92 0.46/0.54 
P = Pathogenic  
B = Neutral  

PROVEAN 0.9 0.84 0.97/0.13 
P = Deleterious  
B = Neutral  

Polyphen2_HDIV 0.93 0.69 0.91/0.09 
P = Probably damaging, 
possibly damaging  
B = Benign  

Polyphen2_HVAR 0.9 0.78 0.91/0.09 
P = Probably damaging, 
possibly damaging 
B = Benign  

REVEL 0.92 0.94 1/0 
P >= 0.5 
B < 0.5  



SIFT 0.93 0.75 0.97/0.03 
P = Damaging  
B = Tolerated  

SNAP2 0.85 0.65 0.82/0.18 
P = Effect 
B = Neutral 

VEST4 0.89 0.9 1/0 
P >= 0.5 
B < 0.5  

 

 
Supplementary Table S2. Predictive performance of the thirteen pathogenicity predictors 

studied in Pejaver et al. [12]. In the first three columns we provide the performance 

parameters required for the cost computations (sensitivity, specificity and coverage/reject rate). 

In the last column, we give the score thresholds that define the pathogenic (P) and benign (B) 

classes for each predictor, according to Pejaver et al.’s (see Table 2 in [13]). The 'not classified' 

class pertains to variants with a prediction score falling between that of the pathogenic and 

benign classes. Note that for the pathogenic and benign classes we have unified the four levels 

(Supporting, Moderate, Strong, and Very Strong) provided by the authors. 

Predictor Sensitivity Specificity Coverage/Reject 
rate 

Output 
homogenization 
& decision cutoff 

BayesDel 0.916 0.906 0.797/0.203 P >= 0.130 
B <= -0.180 

CADD 0.912 0.831 0.782/0.218 P >= 25.3 
B <= 22.7 

EA 0.893 0.882 0.556/0.444 P >= 0.685 
B <= 0.262 

FATHMM 0.981 0.526 0.170/0.830 P <= -4.140 
B >= 3.320 

GERP++ 0.000 1.000 0.237/0.763 B <= 2.700 

MPC 1.000 0.000 0.192/0.808 P >= 1.360 

MutPred2 0.902 0.921 0.773/0.227 P >= 0.737 
B <= 0.391 

PhyloP 0.890 0.792 0.618/0.382 
P >= 7.367 
B <= 1.879 

PolyPhen2 0.895 0.833 0.550/0.450 
P >= 0.978 
B <= 0.113 



PrimateAI 0.914 0.844 0.572/0.428 P >= 0.790 
B <= 0.483 

REVEL 0.923 0.913 0.732/0.268 P >= 0.644 
B <= 0.290 

SIFT 0.903 0.824 0.559/0.441 P <= 0.001 
B >= 0.080 

VEST4 0.928 0.902 0.723/0.277 P >= 0.764 
B <= 0.449 

  



Supplementary Table S3. Predictive performance of the rules for computational evidence  

in the two ATM-adapted versions of the ACMG/AMP guidelines. In the first three columns 

we provide the performance parameters required for the cost computations (sensitivity, 

specificity and coverage/reject rate). In the last column, we give the score thresholds that define 

the pathogenic (P) and benign (B) classes for each predictor, according to Clingen’s expert 

panel [14] and according to Feliubadalo et al. [15]. The 'not classified' class pertains to variants 

with a prediction score falling between that of the pathogenic and benign classes.  

 

Predictor Sensitivity Specificity Coverage/Reject 
rate 

Output 
homogenization 
& decision cutoff 

ClinGen 1.000 0.985 0.825/0.175 
P >= 0.733 
B <= 0.249 

Feliubadaló 0.922 0.945 0.948/0.052 
P = Pathogenic 
B = Benign 
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