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Synthesis of c-KIT Inhibitors Targeting GIST: 
Wang et al. designed and synthesized a novel series of substituted N-(4-methyl-3-(piperidin-4-
yloxy)phenyl) amide derivatives and screened for type-II c-KIT inhibition activity for GISTs against the 
Tel-c-KIT-BaF3, Parental BaF3, K562 cell lines [1]. The synthesis of the designed compounds was completed 
in five steps. Etherification of 2-substituted nitrophenols with various Boc-protected R2 groups, 
hydrogenation of the nitro group, and installation of R3 group via amide formation yielded 4. Removal of 
the Boc group with HCl and HATU-mediated coupling of the resultant amine with various acids furnished 
compounds 6a–v (Scheme S1). Deprotection of the Boc group in 2a, installation of the R1 group via amide 
formation, and then of the nitro group gave 9. Coupling of the resultant amine with corresponding acids 
yielded 10a–d (Scheme S2). Compound 13 was synthesized in three steps from 3a. The R3 group was 
introduced via urea formation, followed by installation of the R1 group via Boc deprotection and amide 
formation (Scheme S3). 

 
Scheme S1. Synthesis of compounds 6a−v. 
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Scheme S2. Synthesis of compounds 10a−d. 

 

 
Scheme S3. Synthesis of compound 13. 

Li et al. designed and synthesized a series of 6,7-dimethoxy-4-phenoxyquinoline derivatives and screened 
for their inhibitory activity against GISTs using wild-type c-KIT and c-KIT T6701 cell lines [2]. Compounds 
22a–z and 22aa–ab were synthesized using a multi-step process that involved nucleophilic substitution of 
4-chloro-6,7-dimethoxyquinoline with 3-aminophenol to produce compound 16 (Scheme S4). Compound 
19 was obtained from Boc-protected 3- or 4-aminopiperidine analogs (18) by treating them with 
chloronitrobenzene derivatives (17), followed by urea formation using triphosgene to produce compound 
20. The desired compounds were obtained by Boc-deprotection (21) and subsequent treatment of the 
resultant amine with corresponding carboxylic acids or acyl chlorides. Compound 27 was synthesized 
through a similar approach with a different reaction order (Scheme S5). The synthesis of compound 33 
involved the nucleophilic substitution of Boc-protected 4-aminopiperidine (18b) with a trifluoromethyl 
substituted chloronitrobenzene (17b), followed by deprotection of the Boc group (24) and connection with 
16 through triphosgene. The resulting compound 25 was hydrogenated to provide the amine moiety, which 
was then treated with propionyl chloride. The next steps involved amide coupling of 16 with 1-
(methoxycarbonyl)cyclopropanecarboxylic acid, hydrolysis of the methyl ester 29, and a coupling reaction 
of the resultant compound 30 with 19d.  Boc deprotection and acylation were performed to produce 
compound 33 (Scheme S6).  
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Scheme S4. Synthesis of compounds 22a−z and 22aa−ab. 
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Scheme S5. Synthesis of compound 27. 

 

 
Scheme S6. Synthesis of compound 33. 

In a continued evaluation of their previously developed c-KIT inhibitor CHMFL-KIT-8140, Wu et al. 
designed and synthesized a series of substituted N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)phenyl)acetamide 
derivatives and screened for their inhibitory activity for GISTs against c-KIT kinase and c-KIT T670I 
mutants [3]. Scheme S7 outlines the synthesis of compounds 35a−u, 36, and 39−40 through a three-step 
procedure that involves reacting 4-chloro-6,7-dimethoxyquinoline with aminophenols or nitrophenols to 
obtain quinoline intermediates, followed by reducing the nitro group to an amine using Fe powder in EtOH 
and coupling the resultant intermediates with substituted phenylacetic acids or acyl chloride to produce 
the target compounds. Scheme S8 demonstrates the synthetic route to prepare the final products 43 and 44. 
The process involves synthesizing intermediate 41 through nucleophilic substitution of methyl 4-
hydroxybenzoate with 4-chloro-6,7-dimethoxyquinoline, followed by basic hydrolysis of the ester to yield 
carboxylic acid 42. The final products were obtained by amidation of carboxylic acid 42 with substituted 
phenethyl amine. Scheme S9 illustrates the preparation of quinoline analogues 48 and 50. The process 
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involves reacting 4-chloro-6,7-dimethoxyquinoline with 4-nitroaniline to obtain phenylamine derivative 
45, which was then subjected to further methylation to yield intermediate 46. The nitro groups in 45 and 46 
were reduced to give amines 47 and 49, respectively, which were subsequently coupled with 2-(4-chloro-
3-(trifluoromethyl)phenyl)acetic acid to produce the desired quinoline analogs. Scheme S10 outlines the 
synthesis of compound 52. Initially, 4-chloro-6,7-dimethoxyquinoline was nucleophilically substituted 
with 4-aminobenzenethiol to produce amine 51. This was followed by an amidation reaction of 2-(4-chloro-
3-(trifluoromethyl)phenyl)acetic acid with amine 51 to produce the final compound 52. Scheme S11 shows 
the synthesis of intermediates 38a−b via nucleophilic substitution of 6,7-dimethoxyquinolin-4-ol with 
substituted 4-fluoronitrobenzenes, followed by reduction to form aniline intermediates 38c−h. The desired 
quinoline compounds 40a−f were achieved through an amidation reaction of 38c−h with 2-(4-chloro-3-
(trifluoromethyl)phenyl)acetic acid. 

NaH, DMSO

110 °C
, 12 h

Ph
2 O, 140 °C

12 h

 
Scheme S7. Synthesis of compounds 35a−u, 36, and 39−40. 

 
Scheme S8. Synthesis of Compounds 43−44. 
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Scheme S9. Synthesis of compounds 48 and 50. 
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Scheme S10. Synthesis of compound 52. 

 
Scheme S11. Synthesis of compounds 40a−f. 

Liu et al. designed and synthesized structurally modified derivatives of the FDA-approved drug axitinib and 
tested them for their inhibitory activity against c-KIT wt and c-KIT-T670I. The synthesis of the designed 
compounds is illustrated in Schemes S12−S14 [4]. An amide coupling reaction of 54 with carboxylic acid and the 
basic hydrolysis of the resultant ester 55 yielded carboxylic acid 56. The synthesis of compounds 57a−p was 
completed by the amide coupling reaction of the resultant acid with various amines, followed by the 
deprotection of the THP protective group. HATU-mediated coupling of amine 54 and then conversion of amine 
54 to urea, and then removal of the THP group from the resultant intermediates produced 58a−b. A Suzuki 
cross-coupling reaction of 60 with various boronic acids and THP protection of 61 yielded 62a−k. Reduction of 
the nitro group produced amine 63a−k. Treatment of 64 with methyl hydrogen malonate, followed by ester 
hydrolysis of 65, furnished carboxylic acid 66. Furthermore, an amide coupling reaction of 63a−k with amine 66, 
followed by the cleavage of the THP protective group produced the designed compounds 67a−k. 
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Scheme S12. Synthetic route for compounds 57a−p. 

 
Scheme S13. Synthetic route for compounds 58a−p and 59. 
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Scheme S14. Synthetic route for compounds 67a−k. 

Kaitsiotou et al. designed and synthesized trisubstituted 3-ethynyl-N-(4-((4-methylpiperazin-1-
yl)methyl)phenyl)benzamide derivatives and screened them against various c-KIT mutants such as V654A, 
T670I, and D816H along with wild-type KIT [5]. The design of compounds was started by maintaining the 
potency of ponatinib and modifying the substitutions in the R1−R4 regions, while the alkyne linker, benzoic 
acid moiety, and N-methylpiperazine moiety of ponatinib were all kept intact throughout SAR 
optimization. The synthesis of the designed derivatives was completed in eight steps. Reductive amination 
of benzaldehyde derivatives A–B yielded benzylpiperazines 68a–b. Alternatively, selective bromination of 
toluene derivatives followed by SN2 substitution with 1N-methylpiprerazine yielded 68a–c. Palladium 
(Pd/C)-catalyzed hydrogenation of nitro aryl intermediates 68a–c yielded anilines 69a–c, and coupling with 
the corresponding iodobenzoic acid derivatives furnished 70a−f. Pd-catalyzed Sonogashira coupling 
reactions of the commercially available aromatic silyl-protected alkynes or those synthesized via 
Sonogashira reaction conditions from the corresponding bromide precursors with precursors 70a−f and in 
situ removal of the silyl protective group using TBAF furnished 71a−t (Scheme S15). 
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Scheme S15. Synthesis of compounds 70a−d and 71a−t. 

Kettle et al. designed and synthesized a potent derivative and tested it against the KIT mutant Ba/F3 and 
PDGFR cell lines to treat GISTs [6]. The synthesis of this potent compound was obtained in four steps. Ethyl 
azidoacetate and 3-methylbut-1-yne underwent a copper-catalyzed cycloaddition to produce the triazole 
ester 72a, and the ester group was then hydrolyzed to carboxylic acid 72b. HATU-mediated amide coupling 
of the resultant acid 72b with Boc-protected amine; deprotection of the Boc group then yielded 73b. 
Hydroxy alkylation of difluorocyanophenol was followed by the conversion of one F atom to an amine, 
and the resultant amine 74a was treated with 1,1-dimethoxy-N,N dimethylmethanamine to yield the 
precursor 74b. The condensation reaction of 73b with 74b in acetic acid yielded 75 (Scheme S16). The 
synthesis of compounds AZD2932 and I-a–f as quinazoline-based VEGFR and PDGFR inhibitors has been 
described previously in patent publications [7-10]. 
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Scheme S16. Synthesis of compound 75. 

Wu et al. designed and synthesized a series of 5-phenyl-thiazol-2-ylamine derivatives and screened them 
for their inhibitory activity for GISTs using c-KIT kinase and GIST-T1 cell lines [11]. Intermediates 76a–b, 
78, and 78a were prepared according to established methods [12-14]. Coupling of pyrimidine 80 with the 
corresponding ester formed urea derivatives 81a–c and 81g–k. Treatment of pyrimidine 80 with isocyanate, 
sulfonyl chloride, and acid chloride produced urea 81d, sulfonamide 81e,[9] and amide 81f, respectively 
(Scheme S17). Thiazol-2-ylamine 85 was then used to produce the 4-monosubstituted pyrimidine derivative 
86 by reacting with 4,6-dichloropyrimidines 77 and NaH in THF, which were then transformed into 4,6-
disubstituted pyrimidines 87 using 1-ethylpiperazine in pyridine at 80℃. The generation of 5-iodothiazol-
2-ylamine 88 via electrophilic iodination followed by Sonogashira coupling of a Boc- or phthalimide-
protected alkyne yielded N-Boc-protected or phthalimide-protected alkyne intermediates. Deprotection of 
the Boc group with TFA or phthalimide with hydrazine and subsequent treatment with the respective ester 
yielded the pyrimidine urea derivatives 90 or 93. Finally, saturation of the alkyne moiety using Pa d catalyst 
in MeOH yielded butylamine 94, which was then treated with ester to yield pyrimidine urea 95 (Scheme 
S18). 
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Scheme S17. Synthesis of compounds 81a−k and 84. 
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Scheme S18. Synthesis of compounds 90, 93, and 95. 
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Lin et al. continued their research from their previous compound 81a by rational design, and the team 
synthesized a series of 5-aromatic substituted thiazol-2-ylamine pyrimidine derivatives and screened them 
for their inhibitory activity for GISTs against c-KIT and FLT3 kinases and the GIST-T1 cell line [10]. The 
process was initiated with the synthesis of 5-aromatic substituted thiazol-2-ylamines 99, followed by the 
protection of 2-aminothiazole (96) to yield N-thiazol-2-yl-propionamide (97). Finally, Suzuki coupling of 
the chloro-substituted pyridine or pyrimidine with 97 yielded 5-aromatic substituted thiazol-2-ylamides 
98. Hydrolysis and neutralization of amide 98 yielded the free 5-aromatic substituted thiazol-2-ylamine 99, 
which was used to obtain 4-mono- and 4,6-disubstituted pyrimidine derivatives 101 and 102–106. The 
sodium salts of 4-pyridin-3-yl-thiazol-2-ylamine 107 and 1-ethylpiperazine were reacted with 6-chloro and 
4-chloro substituents of 4,6-dichloropyrimidine to obtain 4,6-disubstituted pyrimidine 109, respectively. In 
addition, amide 111 was obtained by acylating amine 99b with benzoyl chloride 110 in pyridine. Finally, 
compounds 102–106, 105, and 111 were converted to their corresponding hydrochloride salts by reaction 
with 6 N HCl in CH3OH (Scheme S19). 

 
Scheme S19. Synthesis of the designed compounds. 

Lu et al. designed structural modifications to linifanib and synthesized a series of 3-methyl-1H-
pyrazolo[3,4-b]pyridine derivatives and screened for their inhibitory activity for GISTs against c-KIT and 
PDGFRα kinases [15]. The synthesis of the designed compounds was initiated by treating trifluoroacetate 
with acetonitrile to form 4,4,4-trifluoro-3-oxobutanenitrile (112); then, hydrazine-mediated cyclization 
yielded intermediate 113 (Scheme S20). Multicomponent reaction of 113a and 113b with 4-
nitrobenzaldehyde and 2,2-dimethyl-1,3-dioxane-4,6-dione followed by reduction of the nitro group 
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yielded the amine 115. The amine was reacted with substituted phenyl isocyanates to obtain the desired 
compounds 116a and 116b. Intermediates 117a and 117b were obtained by treating 114a and 114b with 
DDQ and BSTFA. Then, reducing the nitro group of 117b with SnCl2 yielded key intermediate 118. Target 
compounds 119a–b and 112a–n were then synthesized by reacting substituted isocyanates and 
isothiocyanates with key intermediates (Scheme S21). The trisubstituted intermediate 123 was generated 
by Boc protection of 121b, followed by bromination to form 124, and hydrolysis to generate 125. Finally, 
the target compounds 126a and 126b were produced via nucleophilic addition of substituted isocyanates. 
The coupling of various commercially available isocyanates with intermediate 121b resulted in target 
compounds 127a–y (Scheme S22), and intermediate compounds 128a–m were converted into their 
respective amines 129a–m by catalytic hydrogenation. These amines were then coupled with phenyl 
chloroformate and 121b to obtain the target compounds 130a–m (Scheme S23). 

 
Scheme S20. Synthesis of intermediate 113. 
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Scheme S21. Synthesis of compounds 116a−b, 119a−b, and 122a−n. 
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Scheme S22. Synthesis of compounds 126a−b and 127a−y. 
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Scheme S23. Synthesis of compounds 130a−m. 

Andreas et al. designed and synthesized 3-(pyrimidin-4-yl)imidazo[1,2-a]pyridine derivatives as selective 
c-KIT inhibitors for the treatment of GISTs. The synthesis of the designed targets was completed in three 
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steps [16]. The common intermediate 131 was obtained by a Suzuki cross-coupling reaction of 4,6-
dichloropyrimidine and subsequent condensation with 4-fluoropyridin-2-amine. The SNAr reaction of the 
chloro group in 131 with various benzylic amines yielded 132, 133, and 134. A second SNAr reaction of the 
fluoro group with the corresponding alcohols yielded the designed derivatives (Scheme S24). 

 
Scheme S24. Synthesis of advanced KIT inhibitors. 

Nam et al. designed and reported the synthesis of thiazolo[5,4-b]pyridine-based derivatives and screened 
them for targeting c-KIT kinase and for their antiproliferative activities against GIST-T1 and HMC1.2 cell 
lines [17]. The synthesis of novel derivatives was completed in six steps. The synthesis started with the 
formation of aminothiazole, and the amine group was protected with Boc to yield 139. A Suzuki cross-
coupling reaction of 139 with 2-methyl-5-nitrophenylboronic acid yielded 140. The nitro group of 140 was 
reduced to an amine group, HATU-mediated amide coupling of the resultant amine with the 
corresponding carboxylic acid was performed, and removal of Boc provided 142a−i and 142k−w. 
Compound 143a−h amide derivatives were obtained by coupling the amine group with the corresponding 
acid. The urea derivative 142j was obtained by treating 141 with the corresponding isocyanate, followed 
by deprotection of the Boc group with TFA (Scheme S25). 
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Scheme S25. Synthesis of the designed derivatives 142a–w and 143a–h. 
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