
Supplementary Material 
 
Basic X-ray diffraction theory 
 
According to basic X-ray diffraction theory, for a given electron density distribution 𝜌(𝒓), the corresponding 
intensity 𝐼(𝑺) at 𝑺 is proportional to |𝐹(𝑺)|2, where 𝐹(𝑺) is the Fourier transform of 𝜌(𝒓),  given by 

𝐹(𝑺) = ∫ 𝜌(𝒓)𝑒2 𝜋 𝑖 𝑺⋅𝒓𝑑𝒓
ℝ2 . 

If 𝜌(𝒓) is a periodic function satisfying 𝜌(𝒓 + 𝑹𝑙) = 𝜌(𝒓), where 𝑹𝑙 = 𝑙1𝒂1 + 𝑙2 𝒂2, 𝐚1 and 𝐚2 are the 
primitive vectors of the unit cell represented by Cartesian coordinates, 𝐚1 = (𝑎11, 𝑎12), 𝐚2 =
(𝑎21, 𝑎22), and  the integer 𝑙𝑖 (i=1, 2) are indexes. Since the periodic density function 𝜌(𝒓)  can be 
represented by 

𝜌(𝐫) = (𝜌0 ∗ 𝛿Γ)(𝐫), 

where 𝜌0(𝐫) in the density function of the unit cell 𝑈, and 𝛿Γ = ∑𝒍 𝛿(𝐫 − 𝐑𝒍). According to the property 
of the Fourier transform, we have 

𝐹(𝐒) =  (∫
𝑈

𝜌0(𝐫)𝑒𝑖2𝜋𝐒⋅𝐫d𝐫) (∑

𝒍

𝑒𝑖2𝜋𝐒⋅𝐑𝒍) 

                            = 𝐹0(𝐒) ∑

𝑁1

𝑙1=0

exp(2𝜋𝑖𝐚1 ⋅ 𝑺) ∑

𝑁2

𝑙2=0

exp(2𝜋𝑖𝐚2 ⋅ 𝑺)  

where 𝑈 is the unit cell and 𝐹0(𝐒) is the Fourier transform in the unit cell. When 𝑁1 and 𝑁2 are very 

large, the summation ∑
𝑁𝑖
𝑙𝑖=0 exp(2𝜋𝑖𝐚𝑖 ⋅ 𝐒) are almost equal to zero unless 𝐚𝑖 ⋅ 𝐒 is an integer. So 𝐹(𝐒) is 

non-zero unless 
 𝐒 = ℎ𝐛1 + 𝑘𝐛2,  

 where 𝐛1 = (𝑏11, 𝑏12) and 𝐛2 = (𝑏21, 𝑏22) are reciprocal primitive vectors satisfying 𝐚𝑖 ⋅ 𝐛𝑗 = 𝛿𝑖𝑗 . We 

denote 𝐹0(ℎ, 𝑘) = 𝐹0(ℎ𝐛1 + 𝑘𝐛2)  𝐼(ℎ, 𝑘) = 𝐼(ℎ𝐛1 + 𝑘𝐛2). The above analysis indicates that 
  

 𝐼(ℎ, 𝑘) ∝ |𝐹0(ℎ, 𝑘)|2,  
 where  

 𝐹0(ℎ, 𝑘) ≜ 𝐹0(ℎ𝐛1 + 𝑘𝐛2) = 𝑉 ∫
1

0 ∫
1

0
𝜌0(𝑥𝐚1 + 𝑦𝐚2)exp(2𝜋𝑖(ℎ𝑥 + 𝑘𝑦))d𝑥d𝑦,  

 where 𝑉 is the volume of the unit cell. I(ℎ, 𝑘) may require various corrections depending on geometry of 
the experiment and kinds of disorder present. 
 
Other Computational Approaches for Equatorial Intensity Calculations 
 
Besides the computational approach described in the main text, there were two other computational 
approaches we tried. In the second approach, we first assemble the electron density of one thick filament 
and two thin filaments together. There are two equivalent ways to assemble the electron densities, as 
shown in 1. We can view a motif as the smallest repeated unit in the periodic array, located at each lattice 
position, which is a analogy to an atom in crystallography. Mathematically, we can show this approach is 
equivalent to the first approach. To illustrate this point, let’s consider a simple case in which the density 
distribution 𝜌(𝐱) can be written as 𝜌(𝐱) = 𝜌1(𝐱) + 𝜌2(𝐱). By a direct calculation shows that 



 

𝐹(𝐒) = ∫ 𝜌(𝐱)exp(2𝜋𝑖𝐒 ⋅ 𝐱)d𝐱

= ∫ (𝜌1(𝐱) + 𝜌2(𝐱))exp(2𝜋𝑖𝐒 ⋅ 𝐱)d𝐱

= ∫ 𝜌1(𝐱)exp(2𝜋𝑖𝐒 ⋅ 𝐱)d𝐱 + ∫ 𝜌2(𝐱)exp(2𝜋𝑖𝐒 ⋅ 𝐱)d𝐱

= ∫ 𝜌1(𝐱1 + 𝐲)exp(2𝜋𝑖𝐒 ⋅ (𝐱1 + 𝐲))d𝐲 + ∫ 𝜌2(𝐱2 + 𝐲)exp(2𝜋𝑖𝐒 ⋅ (𝐱2 + 𝐲))d𝐲

= exp(2𝜋𝑖𝐒 ⋅ 𝐱1) F1(S) + exp(2𝜋𝑖𝐒 ⋅ 𝐱2) F2(𝑆),

  

 where 𝐹𝑖(𝑆) =  ∫ �̃�i(𝐲) exp(2𝜋𝑖𝐒 ⋅ 𝐲) d𝐲 with �̃�i(𝐲) = 𝜌i(𝐲 + 𝐱1) and 𝐱i is the center of the density 𝜌𝑖 . 
Here exp(2𝜋𝑖𝐒 ⋅ 𝐱i) is the factor for the phase differerence of 𝜌𝑖 with 𝜌.  In other word, we can either first 
add the densities together to compute its Fourier transform or first comptute the Fourier transform and 
add the results together.  

 
  

 
     

Figure  S1: Two representations of the electron density in one repeating motif comprising one thick 
filament and two thin filaments. Part A shows the hexagonal symmetry explicitly. Because each thin 

filament is shared  between 3 thick filaments, the density  in each thin filament is reduced to 1/3 of a 
thin filament density shown in part B. Both representations give equivalent results.  

 
In the third approach, we assemble a large array with N × N unit cells directly, and compute the Fourier 
transform of the full array. An advantage of this approach is that we can account for disorder effects 
explicitly, by specifying displacements of each filament from their perfect lattice positions. This 
approach also enable us to study other non-periodic cases, e.g. different unit cells having different 
densities, and  cases with a finite number of unit cells. Fig. 2 shows the electron densities for arrays with 
5 x 5 unit cells and 21 x 21 unit cells respectively. In both cases, it is assumed that all filaments are 
located in their perfect lattice positions.  A disadvantage of this approach is the increased computation 
costs relative to other two techniques as well as a potential loss in precision, and the presence of edge 
effects,  due to the finite lattice size. However, the calculated intensities from the 1 X 1 unit cell,  direct 
fourier transform, calculation and 21 X 21 unit cell array calculation  showed good agreement, especially 
for the low-orderintensities with divergence at higher diffraction orders. For example, there is a 
discrepancy of approximately 10% for the (4,0) intensity between the intensities obtained from the 1 X 1 
unit cell and the 21*21 unit cells. 



    

 
Figure  S2: Electron densities in large arrays with multiple unit cell (left: 5 × 5 unit cells; right: 21 × 21 

unit cells) 
 

 
Resolution of the electron density distributions. 
 
The electron density data was originally created with a resolution of 1 pixel per 0.01 nm, resulting in 
8601 X 8601 pixels for each filament. However, computing the Fourier transform using this original 
resolution incurs a large computational cost. To reduce the computational burden, we tried mapping the 
electron density onto a coarser mesh. Numerical tests have shown that a resolution of 801 X 801 pixels 
was sufficient, with each pixel corresponding to 0.11 nm. We compared the X-ray intensities obtained 
from the original resolution with those obtained from the coarse-grained density and found that the 
difference between normalized intensities from the high resolution and the low-resolution density 
distributions was small (less than 0.05%). 
 
Determining best fit parameters for the thick filament backbone model 
The fittable parameters in the thick filament backbone model are the radial center of mass of the PS heads 
(denoted by x) and the thickness of the PS region (denoted by y) (Figure 4 in the main text). We determine 
these two parameters using the relaxed muscle diffraction data by brute-force parameter fitting with the 
fixed parked state ratio, provided by MUSICO simulations (PS ratio = 0.8 for EDL muscle). We varied the 
radial center of mass of the PS heads from 11.5 nm to 14 nm, and the thickness of the PS region from 4 
nm to 6.5 nm. Table S1  shows the  best fits, as judged by the values that yielded the smallest R-factor for 
EDL muscle. On this basis, we chose the radial center of mass of the PS heads to be 12.5 nm and the 
thickness of PS region to be 5.5 nm. We also show the dependence of the R-factor for fitting the EDL 
resting diffraction data with respect to the x and y  parameters in Fig S4, indicating  that the parameters 
that we picked are optimal.   
  



 
 

Table S1 Best Fit parameters for EDL resting data (fixed Δ𝑀= 2.58 nm, Δ𝐴= 2.15 nm) 
X y (1, 0) (1,1) (2,0) (2,1) (3,0) (2,2) ((3,1) (4, 0) R-factor 

12.5 6 100 34.58 17.68 9.40 1.57 0.30 1.24 0.21 0.0039 

12.5 6.5 100 34.89 17.62 9.82 1.47 0.29 1.23 0.19 0.0042 

12.5 5.5 100 33.94 18.67 9.16 1.79 0.35 1.20 0.22 0.0043 

13 5.5 100 39.87 19.86 8.57 2.34 0.34 1.66 0.31 0.0048 

13 6 100 40.29 18.92 9.01 2.06 0.30 1.66 0.28 0.0049 

13 6.5 100 40.60 18.92 9.47 1.95 0.31 1.60 0.25 0.0054 

12.5 5 100 33.06 20.54 8.89 2.17 0.45 1.11 0.23 0.0055 

13 5 100 39.25 21.74 8.17 2.83 0.42 1.63 0.34 0.0056 

12 6.5 100 31.20 16.00 10.25 1.04 0.26 0.99 0.14 0.0067 

12 6 100 30.79 16.12 9.94 1.12 0.27 0.97 0.16 0.0068 

      
 

 
Figure S4  R-factor with respect to x (radius center of mass of the PS head) and y (thickness of PS region) 
for EDL resting data (Δ𝑀= 2.58 nm Δ𝐴= 2.15 nm). 

MUSICO simulation parameters  

Table S2. MUSICO parameters for all simulations of isometric contractions in EDL rat muscles.  

Description  Parameter  Value  

Crossbridge Cycle      

Myosin-actin binding rate  k+A0  100 s-1  

Myosin-actin detachment ratea  k−Ao  40 s-1  

Working stroke [62-65]   d  10.5 nm  

Second working stroke [62-65]   𝛿  1 nm  



Myosin reverse stroke cap rateb  k−Picap  33 s-1  

ADP release rate  k+D0  300 s-1  

ATP binding and myosin detachment rate constanta  k+T  106 s-1  

Hydrolysis forward ratea  k+H  150 s-1  

Hydrolysis backward ratea  k−H  15 s-1  

Crossbridge stiffness [62-65]   𝜅  1.3 pN/nm  

kBT at 25 °C  kBT  4.116 pN·nm  

Parked State      

Transition rate constant to “parked state”c  k−PS  200 s-1  

Baseline rate constant  kPS0  40 s-1  

Amplitude  kPSmax  220 s-1  

Calcium Hill function slopec  b  5  

Half activation point of the Hill functionc  Ca50  1 μM  

Calcium Kinetics      

Calcium binding to TnC equilib. rate constant [66,67]   K~Ca  106 M-1  

Calcium binding rate constant to TnC [66,67]   k~Ca  7.54·107 M-1·s-1  

Calcium dissociation rate constant from TnC [68-70]   k−Ca  75.4 s-1  

TnI-actin equilibrium rate const. at high Ca2+  𝜆  10  

TnI-actin backward rate const.   𝜆−  375 s-1  

TnI-actin-Ca cooperativity coefficient [65,67]   휀o  0.01  

CFC      

Tropomyosin pinning angle [71]  𝜙−  -25°  

Myosin Tm angular displacement [71]  𝜙+  10°  

Angular standard deviation of free CFC [72,73]   𝜎0  29.7°  

Persistence length of Tm-Tn confined chain [73]   1/𝜉  50 nm  

Sarcomere      

Sarcomere Length  SL  2.2 μm  

Reference length of actin filament [74,75]   Lao  1.1 μm  

Interfilament spacing at SL=2.2 μm [76]   d10  33.8 nm  

Thin filament elastic modulus [77,78]   AEa  65 nN  

Thick filament elastic modulus [77]   AEm  132 nN  

a Based on mouse and human α-myosin values in [79,80], with corrections for temperature and  

ionic strength as documented in [81].  

b The power stroke rates (k+Pi and k−Pi) are expected to be slower in β-isoforms for ~5 fold and this is 
achieved by reducing adapting Gstroke and decreasing k−Picap by factor ~3; For the same isoform the 
power stroke rate increase from humans to rats and to mice is accomplished by increase in k−Picap.   

c Assumed.  


