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Supplementary Information 

 

Full description of POP landscape depicted in Figure 1 

In the description of the landscape below, all candidate genes/proteins that were implicated 

in POP through our exome chip study (Table 2), the other POP candidate 

genes/proteins/molecules (Supplementary Table 1), and three POP-linked signaling 

molecules (estradiol, glutathione and progesterone) are indicated in bold. 

 

Signaling through the molecular landscape is initiated at the cell membrane of epithelial cells 

and underlying fibroblasts of the urogenital tract, where the binding of ligands from the 

extracellular matrix (ECM) to their respective receptors leads to the modulation of several 

downstream molecular cascades in the cytoplasm, cytoskeleton, endoplasmic reticulum and 

nucleus. These cascades converge on regulating epithelial-mesenchymal transition (EMT).  In 

essence, EMT is characterized by a so-called 'cadherin switch' that is initiated when epithelial 

cells start producing less of the epithelial marker and membrane protein E-cadherin (CDH1) 

and more of the mesenchymal marker N-cadherin (CDH2) (not shown)1. This in turn results in 

the adherens junctions between epithelial cells letting loose and the epithelial cells gradually 

transforming into mesenchymal cells. 

 

In normally functioning epithelial cells, cytoplasmic AHNAK binds and stabilizes the epithelial 

cytoskeleton, which in turn results in CDH1 being anchored to and modulated by the (actin) 

cytoskeleton. Cytoskeleton-anchored CDH1 of opposite cells bind each other and hence 

positively regulate epithelial cell-cell contacts, preventing EMT2,3. Further, NEB binds and 

stabilizes the (actin) cytoskeleton4, the organization of which is also regulated by cytoplasmic 

ARHGEF195, which is itself upregulated by the extracellular cytokine TGF-beta-1 (TGFB1)6. 

TGFB1 is a key positive regulator of EMT as it significantly downregulates CDH1 expression7. 

In this respect, SCUBE2 is an ECM protein that is involved in upregulating the expression of 

CDH1, and hence inhibits TGFB1-induced EMT8. Furthermore, AHNAK shuttles between the 

cytoplasm and nucleus9, and nuclear AHNAK can induce EMT2. A possible explanation for the 

role of AHNAK in inducing EMT may lie in the fact that in response to TGFB1, AHNAK promotes 

the activation and translocation of SMAD3 to the nucleus10, which in turn downregulates 

CDH17.  
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In addition and as further described below, SMAD3 regulates the expression of a number of 

EMT-involved extracellular proteins. ZFYVE9 (other name: SARA) is a peptidase that binds and 

retains SMAD3 in the cytoplasm. Upon phosphorylation and activation by TGFB1 (see above), 

phosphorylated SMAD3 translocate to the nucleus and promotes EMT11,12. Further, ZFYVE9 

binds and forms a functional complex with the endoplasmic reticulum (ER) membrane-located 

ANKLE213, and inhibits EMT through upregulating the expression of CDH114. TGFB1 is 

additionally involved in modulating the SMAD3-ZFYVE9-ANKLE2 complex through 

downregulating the expression of ZFYVE914 and regulating ANKLE2 expression15. 

 

Within epithelial cells, the activation and translocation of SMAD3 to the nucleus is also 

positively regulated by the adaptor protein NFKB16. In turn, NFKB is activated by cytoplasmic 

FASTKD1 and RRM217,18, and downstream of TGFB1 signalling19. Furthermore, SMAD3 and 

TGFB1 upregulate each other's expression20,21. When activated in the nucleus by e.g. AHNAK 

(see above), SMAD3 downregulates the expression of the nuclear estrogen receptor ESR122. 

In turn, through binding and forming a complex with its natural ligand, the female sex 

hormone estradiol (E), ESR1 upregulates the expression of AHNAK23,24.  The POP-implicated 

microRNAs miR-221 and miR-222 also negatively regulate ESR1 expression through binding 

and destabilizing the ESR1 mRNA25.  Epithelial26 NOP56 also binds and interacts with estradiol-

bound ESR124. Moreover, USP4 is an enzyme that deubiquitinates ADORA2A - an epithelial 

and mesenchymal receptor that is bound and activated by extracellular adenosine (A)27 - 

which increases the amount of functional receptors at the cell membrane28.  The A-ADORA2A 

complex is also involved in upregulating the expression of CDH129 and hence inhibiting EMT30 

(see above). Further, STYK1, a membrane protein that is upregulated downstream of 

SMAD331, promotes EMT through decreasing CDH1 expression32.  

 

Apart from downregulating ESR1 and CDH1 (see above), nuclear SMAD3 upregulates the 

expression of the other nuclear estrogen receptor ESR222.  Further, E-bound ESR1 and ESR2 

upregulate and downregulate the expression of PGR - the nuclear receptor for the pregnancy 

hormone progesterone (P) - respectively33.  Interestingly, through our exome chip analysis, 

we identified POP patients with mutations in the genes encoding AKR1C1 and AKR1D1, two 

functionally related enzymes that negatively regulate the production of P through promoting 

its conversion into inactive P metabolites27.  P-activated PGR34 and  E-activated ESR235 
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upregulate the expression of GGCT, one of the major enzymes involved in the metabolism of 

the important cellular antioxidant glutathione (G)36 that is highly expressed in the nucleus and 

cytoplasm of epithelial cells of the reproductive system37. GPX1, GSTP1 and METAP1 are other 

cytoplasmic enzymes with an important role in the production and metabolism of 

glutathione27,38.  The membrane protein RAGE is the receptor for extracellular AGE (or 

advanced glycation end product) molecules.  The AGE-RAGE complex regulates a number of 

downstream signaling cascades and is found in both epithelial cells and fibroblasts (see 

below)39.  In epithelial cells, GPX1 is involved in downregulating the expression of RAGE40.   

 

In addition, GSTP1 is involved in regulating the expression of ATP12A41, a membrane-located 

symporter of potassium (K+) and hydrogen (H+)27 that regulates epithelial cell function42.  

Moreover, E-bound ESR143 and ESR244 as well as P-bound PGR45,46 inhibit EMT through 

upregulating CDH1 expression, while extracellular matrix protein 1 (ECM1) promotes EMT 

through downregulating CDH147. E-bound ESR1 also upregulates the expression of WNT448, 

an extracellular regulator of EMT49 that is downregulated by TGFB16.  Further, FBLN3 is an 

ECM protein that binds and forms a functional complex with ECM150 and negatively regulates 

EMT through upregulating CDH1 expression51. In addition, FBLN3 inhibits TGFB1-dependent 

signaling52. Lastly, SDHAF3 is a mitochondrial enzyme that negatively regulates EMT53. In 

addition, TFAM is a mitochondrial enzyme that is highly expressed in epithelial cells54 and 

required for maintaining normal levels of mitochondrial DNA (mtDNA)27. Interestingly, 

changes in mtDNA copy number may play a role in POP development55-57. 

 

A part of the landscape is also involved in regulating the immune response in that beta-2-

microglobulin (B2M) - an EMT-inducing58,59 extracellular protein that mediates the 

presentation of antigens to the immune system 27- is (up)regulated by TGFB160.  Further, B2M 

binds and functionally interacts with LILRA161, and it is involved in upregulating the expression 

of HLA-DQA1 and HLA-DQB162, which form a functional complex with each other63 and are 

both downregulated by TGFB162.  HLA-DQA1 and HLA-DQB1 are MHC class II (MHC II) 

proteins27 . MHC II proteins are expressed in epithelial cells of the female reproductive tract 

where they are involved in regulating the immune response through presenting foreign 

antigens to circulating T lymphocytes64,65 (not shown). 
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Remodeling of the ECM constitutes another major signaling cascade within the landscape and 

almost all POP candidate genes identified prior to this study encode proteins that are involved 

in this process.  Further, fibroblasts produce most of these extracellular POP candidates (see 

below).  In addition, literature suggests that in women with and without POP, mechanical 

stretch alters the response of fibroblasts to ECM remodeling and the interaction between the 

ECM and these fibroblasts66-68.  The ECM is composed of different molecules, including 

collagen (COL) and elastin (ELN) fibers as well as proteins that crosslink or regulate them.  

First, A-activated ADORA2A (see above) is involved in upregulating the expression of the 

extracellular collagen COL3A169,70 and downregulating the extracellular matrix 

metalloproteinase MMP971 - which itself is upregulated downstream of NFKB72,73 and 

degrades COL1A174 and ELN 75 - and TGFB130.  Moreover, the A-ADORA2A complex inhibits 

the degradation of ELN71 while MMP9 is involved in upregulating the expression of another 

collagen, COL18A176.  Fibulin 5 (FBLN5) and lysyl oxydase oxidase like 1 (LOXL1) preferentially 

bind each other77-79 and the FBLN5-LOXL1 complex facilitates the crosslinking of elastic fibers 

through binding and interacting with ELN77.  In addition, lysyl oxidase (LOX) catalyzes the 

crosslinking and formation of elastic fibers through ELN binding80-82.   

 

Apart from elastic fiber crosslinking, LOX is essential for binding and hence crosslinking 

collagens such as COL1A1 and COL3A183.  FBLN5 inhibits EMT through significantly enhancing 

the ability of TGFB1 to downregulate the expression of CDH184(not shown).  FBLN5 also 

increases the expression of MMP284 and regulates the activity of MMP984,85.  MMP2 is a key 

MMP in the landscape as it degrades COL1A174 and ELN86 and is downregulated through 

estradiol-bound ESR287 and upregulated by NFKB88.  Further, MMP2 is involved in 

upregulating the other MMPs MMP1, MMP3 - which promotes EMT through degrading 

CDH189,90 - and MMP991.   

 

The extracellular protein TIMP2 binds and forms a complex with MMP192 and MMP293 while 

it inhibits MMP194, MMP295 and MMP996. TIMP1 - a protein that is functionally related to 

TIMP2 - inhibits MMP192, MMP297, MMP327,98 and MMP997, while its expression is 

upregulated by TGFB199. Moreover, MMP3 activates both MMP9100 and MMP1101, with the 

latter being upregulated by ELN102.  Both MMP1 and MMP3 also upregulate the expression of 

MMP9103. Additionally, COL18A1 downregulates the expression of MMP1104 and inhibits 
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MMP2105, which itself is involved in upregulating COL18A1 expression106. Further, BMP1 is an 

extracellular matrix metalloproteinase that cleaves and regulates the activity of LOX107.  

Likewise, BMP1 directly binds, interacts with and regulates the activity of COL1A1 through 

cleavage107-109.  Also, FBLN3 downregulates the expression of FBLN5110 while it negatively 

regulates MMP2 and MMP9110. Lastly, LAIR2 is another ECM protein that binds and 

functionally interacts with COL1A1, COL3A1 and COL18A1111. 

 

TGFB1 is involved in ECM remodeling through regulating the expression of the majority of the 

above described ECM proteins. TGFB1 mediates collagen and elastin fiber deposition in the 

ECM through (up)regulating the expression of BMP1112,113, COL1A1114-117, COL3A1116, ECM115, 

ELN117, FBLN584,118, LOX and LOXL1117.  Moreover, TGFB1 upregulates the expression of 

MMP2119, MMP3119,120 and MMP9119,121 while it is involved in decreasing the expression of 

MMP1122,123.  In addition, cell surface-localized MMP2 and MMP9 can cleave and hence 

activate latent TGFB1 (not shown)124.   

 

The extracellular proenzyme plasminogen (PLG) is cleaved by the PLAU and PLAT enzymes 

(not shown) to plasmin (PL)27, an extracellular enzyme that dissolves the fibrin of blood clots 

and acts as a proteolytic factor in a variety of other biological processes, including ECM 

remodeling27.  PLAU binding to its receptor (not shown), PLAUR, which is anchored in the 

fibroblast cell membrane and has a role in regulating fibroblast growth125, promotes the 

cleavage of PLG to PL27, a process that is also stimulated by TGFB1126.  PL upregulates the 

expression of COL1A1127 and it activates MMP1, MMP2, MMP3 and MMP9128-130.  Further, PL 

is inhibited by the extracellular proteinase inhibitor SERPINA1, which itself is degraded by 

MMP1 (not shown), MMP2, MMP3, MMP8 and MMP9131.  The extracellular form of YWHAB 

(see below) is also involved in upregulating the expression of MMP1132. 

 

Since fibroblasts are responsible for the synthesis and secretion of the main ECM components 

through (e.g. AHNAK- or TGFB1-activated) SMAD3 - which also plays a major role in EMT (see 

above) - fibroblast survival and apoptosis (and hence proper functioning) is another important 

landscape process.  In this respect, SMAD3 upregulates the expression of COL1A1, COL3A1116 

and MMP9133, whereas it downregulates ELN134 and MMP1123.  Further, nuclear SPOP belongs 

to an E3 ubiquitin-protein ligase complex that is involved in upregulating MMP1 expression135.  
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This SPOP complex also represses the transcriptional activity of ESR1136 and its activity is 

regulated through binding and interacting with SPOPL137. 

 

TRAIL (other name: TNFSF10) is a member of the tumor necrosis factor (TNF) family of 

extracellular cytokines that binds to its receptors, the transmembrane proteins TRAIL-R1 

(other name: TNFRSF10A), TRAIL-R2 (other name: TNFRSF10B) and TRAIL-R3 (other name: 

TNFRSF10C), which is anchored in the fibroblast cell membrane27.  Upon binding TRAIL-R1138 

and TRAIL-R2139, TRAIL triggers fibroblast apoptosis through activating CASP3 or NFKB140,141.  

In contrast, TRAIL-R3 competes with TRAIL-R1 and TRAIL-R2 for TRAIL binding and, as TRAIL-

R3 does not have a cytoplasmic 'death domain', it inhibits the TRAIL-R1/2-induced apoptotic 

cascades and hence protects fibroblasts against apoptosis142. TGFB1 (up)regulates the 

expression of TRAIL-R1 and CASP3143 and, as already mentioned above, NFKB is activated 

downstream of TGFB1 signalling19.  In turn, NFKB regulates the activity of CASP3144,145, 

providing additional regulation of the TRAIL-R1/R2-apoptotic signaling cascade.  In addition, 

TGFB1 promotes EMT through activating miR-155146, a microRNA that regulates inflammation 

and fibrosis and is involved in inhibiting CASP3147 and upregulating the expression of 

SMAD3148.  CASP3 also cleaves (and hence regulates the activity of) AHNAK149, which, as 

already indicated above, shuttles between the cytoplasm and nucleus9 and stimulates the 

TGFB1-induced activation and translocation of SMAD3 to the nucleus10.  Further, CASP3 

(negatively) regulates the activity of PARP1150,151, a nuclear protein that modulates oxidative 

stress-induced apoptosis in fibroblasts152.  Moreover, PARP1 is activated by TRAIL153.  RAD52, 

a nuclear DNA repair protein that promotes the survival of fibroblasts154, also hyperactivates 

PARP1155.  Further, both SMAD3156 and YWHAB157 bind and interact with WNK1, a kinase that 

is also upregulated by TGFB1158.   

 

In addition, COL18A1 decreases the expression of HIF1A159, a transcription factor that 

counteracts apoptosis of fibroblasts159.  Further, HIF1A binds and interacts with ESR124, 

SMAD3160 and SPOP161, while TGFB1 and HIF1A upregulate each other's expression162,163.  

HIF1A is also bound and activated by PARP1164, and it is involved in increasing the expression 

of MMP1165, MMP2166, MMP9166, LOX (not shown)167 and PLAUR167.  Moreover, NACA2 is a 

nuclear protein that forms a functional complex with NACA168, a positive regulator of COL1A1 

expression169.  
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Another important protein in the landscape is vimentin (VIM), a cytoskeletal protein of which 

the expression is increased in mesenchymal cells such as fibroblasts during EMT and that 

regulates fibroblast function, in particular the response to mechanical stress170.  VIM 

expression is upregulated by ECM147 and downregulated by FBLN351. while the protein is also 

cleaved by CASP3 (not shown)171 and it is involved in increasing the production of TGFB1 by 

fibroblasts172.  VIM expression is also downregulated by TBX5173, a nuclear transcription factor 

that is found in fibroblasts174 and also downregulates the expression of both COL1A1175 and 

COL1A3175. Moreover, VIM upregulates the expression of ITGB1176, a membrane protein of 

the integrin family that downregulates COL1A1 expression177, is involved in regulating the 

activity of COL18A1178 and is upregulated downstream of both TGFB1158 and PLAUR179.  ITGB1 

upregulates the expression of MMP9 - which is inhibited by FBLN5180 - and of LAMC1181, an 

ECM protein that binds and is upregulated by TGFB1182,183. ITGB1 is also bound and regulated 

by EMILIN1184,185, an ECM proteins that is secreted by fibroblasts186 and binds/interacts with 

both ELN187 and LAIR2 188. Further, EMILIN1 inhibits TGFB1 signaling189.  

 

As already indicated above, the AGE-RAGE complex regulates a number of downstream 

signaling cascades in both epithelial cells and fibroblasts.  In this respect, the AGE-RAGE 

complex stimulates the apoptosis of fibroblasts190 in which it regulates the activity of 

NFKB21,191 and inhibits CASP3192.  Further, AGE-RAGE is involved in upregulating the 

expression of MMP2193, MMP9194 - which is itself inhibited by ECM1195 - and TGFB1196, while 

it also promotes the translocation of SMAD3 from the cytoplasm to the nucleus of 

fibroblasts21.  

 

Lastly, in fibroblasts, MRPL35 is located in and affects the function of mitochondria through 

regulating the synthesis of the cytochrome C oxidase (COX) enzyme (not shown), which is part 

of the IVth respiratory chain complex197 that, together with other respiratory chain complexes, 

may be expressed at lower levels in women with POP198. 
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