
Equations and methods 
 

Equation S1. Quantitative estimation of Drug-Likeness [1] (see File S47) 

QED୵ = exp
⎣⎢⎢
⎢⎢⎡
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⎥⎥⎤, where W୶ means weight of natural logarithm of each 

molecular descriptor, for MW weight is 0.66 then - * ln(d୑୛), ALOGP weight is 0.46 then - *ln(d୅୐୓ୋ୔), 

HBA weight is 0.05 * ln(dୌ୆୅), HBD weight is 0.61 then - * ln(dୌ୆ୈ), PSA weight is 0.06 then - * ln(d୔ୗ୅), 

ROTB weight is 0.65 then - * ln(dୖ୓୘୆), AROM weight is 0.48 then - * ln(d୅ୖ୓୑), ALERTS weight is 0.95 

then - * ln(d୅୐୉ୖ୘ୗ). Functions of desirability for each molecular descriptor: 

d୶ = a + b
቎1 + exp ቌ− x − c + d2e ቍ቏ ⎣⎢⎢

⎢⎢⎢
⎡1 − 1

1 + exp ቌ− x − c − d2f ቍ⎦⎥⎥
⎥⎥⎥
⎤
 

d୑୛ = 2.817 + 392.575቎1 + exp ቌ− MW − 290.749 + 2.420249.223 ቍ቏ ⎣⎢⎢
⎢⎢⎢
⎡1 − 11 + exp ቌ− MW − 290.749 − 2.420265.371 ቍ⎦⎥⎥

⎥⎥⎥
⎤
 

d୅୐୓ୋ୔ = 3.173 + 137.862
቎1 + exp ቌ− ALOGP − 2.535 + 4.58120.823 ቍ቏ ⎣⎢⎢

⎢⎢⎢
⎡1 − 1

1 + exp ቌ− ALOGP − 2.535 − 4.58120.576 ቍ⎦⎥⎥
⎥⎥⎥
⎤
 

dୌ୆୅ = 2.949 + 160.461቎1 + exp ቌ− HBA − 3.615 + 4.43620.290 ቍ቏ ⎣⎢⎢
⎢⎢⎢
⎡1 − 11 + exp ቌ− HBA − 3.615 − 4.43621.301 ቍ⎦⎥⎥

⎥⎥⎥
⎤
 

dୌ୆ୈ = 1.619 + 1010.051
቎1 + exp ቌ− HBD − 0.985 + 10ିଽ20.714 ቍ቏ ⎣⎢⎢

⎢⎢⎢
⎡
1 − 1

1 + exp ቌ− HBD − 0.985 − 10ିଽ20.921 ቍ⎦⎥⎥
⎥⎥⎥
⎤
 

d୔ୗ୅ = 1.877 + 125.223቎1 + exp ቌ− PSA − 62.908 + 87.834212.020 ቍ቏ ⎣⎢⎢
⎢⎢⎢
⎡1 − 11 + exp ቌ− PSA − 62.908 − 87.834228.513 ቍ⎦⎥⎥

⎥⎥⎥
⎤
 



dୖ୓୘୆ = 0.010 + 272.412
቎1 + exp ቌ− ROTB − 2.558 + 1.56621.272 ቍ቏ ⎣⎢⎢

⎢⎢⎢
⎡1 − 1

1 + exp ቌ− ROTB − 2.558 − 1.56622.758 ቍ⎦⎥⎥
⎥⎥⎥
⎤
 

d୅ୖ୓୑ = 3.218 + 957.737
቎1 + exp ቌ− AROM − 2.275 + 10ିଽ21.318 ቍ቏ ⎣⎢⎢

⎢⎢⎢
⎡
1 − 1

1 + exp ቌ− AROM − 2.275 − 10ିଽ20.376 ቍ⎦⎥⎥
⎥⎥⎥
⎤
 

d୅୐୉ୖ୘ୗ = 0.010 + 1199.094
቎1 + exp ቌ− ALERT + 0.090 + 10ିଽ20.186 ቍ቏ ⎣⎢⎢

⎢⎢⎢
⎡
1 − 1

1 + exp ቌ− ALERT + 0.090 − 10ିଽ20.875 ቍ⎦⎥⎥
⎥⎥⎥
⎤
 

Each of d୶ value is then compared to the maximal possible d୫ୟ୶. The results are used during final QED 

calculations.  

Example: QED for aspirin: MW = 180.16 g/mol; ALOGP = 1.31; HBA = 4; HBD = 1; PSA = 63.6 Å²;  

ROTB = 3, AROM = 1; ALERTS = 2. 

QEDୟୱ୮୧୰୧୬ = exp
⎣⎢⎢
⎢⎢⎡
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⎥⎥⎤ = 0.56 

 

Equation S2. Lipinski’s rule of 5 [2] 

Molecular descriptors set – Molecular weight – MW, octanol-water partition coefficient – LogP, number of 

hydrogen donors – HBD, number of hydrogen acceptors – HBA, number of rotatable bonds – ROTB. 

To pass this test molecule should fulfill the below conditions: MW ≤ 500 g/mol, LogP ≤ 5, HBD ≤ 5, HBA ≤ 10, ROTB ≤ 5 

Example: Aspirin: MW = 180.16 g/mol; LOGP = 1.31; HBA = 4; HBD = 1; ROTB = 3 

MW(aspirin) < 500, LogP < 5, HBA <10, HBD <5, ROTB < 5 Aspirin passes this filtration. 

 

Equation S3. Normalization function 

Normalized value =  value − minimal value in datasetmaximal value in dataset − minimal value in dataset 
Example: six elements are given 3, 8, 15, 32, 12, 45. 

Normalization results are: Normalized value(3) =  3 − 345 − 3 = 0.000 Normalized value(32) =  32 − 345 − 3 = 0.690 



Normalized value(8) =  8 − 345 − 3 = 0.119 Normalized value(12) =  12 − 345 − 3 = 0.214 

Normalized value(15) =  15 − 345 − 3 = 0.286 Normalized value(45) =  45 − 345 − 3 = 1.000 

 

Equation S4. The binding free energy calculation [3] ∆G = ൫Vୠ୭୳୬ୢ୐ି୐ − V୳୬ୠ୭୳୬ୢ୐ି୐ ൯ + ൫Vୠ୭୳୬ୢ୔ି୔ − V୳୬ୠ୭୳୬ୢ୔ି୔ ൯ + ൫Vୠ୭୳୬ୢ୔ି୐ − V୳୬ୠ୭୳୬ୢ୔ି୐ + ∆Sୡ୭୬୤൯, where L refers to 

ligand and P indicates protein in the docking energy calculation.  

Each V parameter has a unit of kcal/mol.  ∆Sୡ୭୬୤ - the conformational entropy lost upon binding. 

Equation S5. Energetic terms calculation [3] V =  W୴ୢ୵ ෍(A୧୨r୧୨ଵଶ − B୧୨r୧୨଺ )୧,୨ + W୦ୠ୭୬ୢ ෍ E(t)( C୧୨r୧୨ଵଶ୧,୨ − D୧୨r୧୨ଵ଴)
+ Wୣ୪ୣୡ ෍ q୧q୨e(r୧୨)r୧୨ + Wୱ୭୪ ෍(S୧V୨ + S୨V୧)e(ି୰౟ౠమଶ஢మ)୧,୨୧,୨  

Where W୴ୢ୵ means weighting constant for Van der Waals interactions, A୧୨ = 4ϵσଵଶ [4] (𝜖 means 

strength of attraction by particles, 𝜎 means van der Waals radius (equals ½ of the internuclear distance 

between nonbonding particles), B୧୨ = 4ϵσ଺ [4], r is the distance of separation between both particles (from 

one center of the particle to the center of another particle). W୦ୠ୭୬ୢ means weighting constant for hydrogen-

bonding. Wୣ୪ୣୡ means weighting constant for electrostatics. q means the charge [4].  Wୱ୭୪ means weighting constant for desolvation. 

First-term, W୴ୢ୵ ∑ ൬୅౟ౠ୰౟ౠభమ − ୆౟ౠ୰౟ౠల ൰ ,୧,୨  is a typical 6/12 potential for dispersion/repulsion interactions [5, 3], the 

Lennard-Jones Potential [4].  

Second, W୦ୠ୭୬ୢ ∑ E(t)(େ౟ౠ୰౟ౠభమ୧,୨ − ୈ౟ౠ୰౟ౠభబ), describes input from H-bond based on 10/12 potential. Parameters C 

and D are assigned to give the maximal energy outcome for hydrogen-oxygen and nitrogen H-bonds, which 

is about 5 kcal/mol at 1.9 Å length and with an energy of about 1 kcal/mol when an H-bond with sulfur is 

formed at 2.5 Å in length. Function E(t) provides energy change based on the angle t from ideal H-bonding 

geometry [5, 3].  

Third term, Wୣ୪ୣୡ ∑ ୯౟୯ౠୣ(୰౟ౠ)୰౟ౠ୧,୨ , refers to the screening Coulomb potential in electrostatics [5, 3, 4].  

Fourth, Wୱ୭୪ ∑ (S୧V୨ + S୨V୧)e(ష౨౟ౠమమಚమ)୧,୨ , so-called desolvation potential, which is calculated on the volume of 

atoms (V) that surround a certain atom and shelter it from solvent, the S parameter is used there as a weight. 

Also, an exponential term can be found. It is related to distance-weighting input and is given by σ, and equals 

3.5 Å [5, 3]. 

 



Equation S6. Categorical cross-entropy equation [6] (see File S47) Loss =  − ∑ y୧ ∗ log (yనෝ)୭୳୲୮୳୲ ୱ୧୸ୣ୧ , where 𝑦పෝ  is i-th scalar value in the model output, 𝑦௜ is the corresponding 

target value, and output size (classes) is the number of scalar values in the model output.  
Table 1. Categorical cross-entropy exemplary calculations. 

Target values model output Loss Partial loss 
Structure 1 Structure 1 Structure 1   

0 0.110 0.418 0.000 
1 0.720  -0.143 
1 0.530  -0.276 
0 0.011  0.000 

Structure 2   Structure 2   
1 0.560 0.293 -0.252 
0 0.240  0.000 
1 0.910  -0.041 
0 0.110  0.000 

Structure 3   Structure 3   
0 0.180 0.077 0.000 
1 0.930  -0.032 
1 0.920  -0.036 
1 0.980  -0.009 

Structure 4   Structure 4   
0 0.050 0.036 0.000 
0 0.020 0.000 
1 0.950  -0.022 
1 0.970  -0.013 

 
Method S1. SYBA classifier – a SYnthetic Bayesian Accessibility classifier is a tool that classifies organic 

compounds as easy-to-synthesize (ES) or hard-to-synthesize (HS). This algorithm is a fragment-based method. 

The analyzed molecule is decomposed into ECFP4-like fragments, and a score is assigned to each fragment. 

All scores are then summed. If the resultant score is positive, the structure is considered as easy-to-synthesize 

[7]. 

Each compound is represented by a binary fingerprint F = [fଵ, fଶ, fଷ, … , f୑] of length M. f୧ indicates the 

presence (1) or absence (0) of the specific fragment i in the compound. This fingerprint is used to assign the 

molecule to a class C ∈ < ES, HS >. The Bayesian theorem is used p(C|F) =  ୮൫FหC൯୮(େ)୮(୊) , where p(C|F) is the 

posterior probability that a compound with a certain set of molecular fragments F belongs to class C.  

The likelihood p(F|C) is the conditional probability that a compound from the class C contains a set of 

molecular fragments F. The marginal probabilities p(F) and p(C) express our belief to see a set of molecular 

fragments F and the molecule that belongs to the class C. 

SYBA score is calculated by use of the equation shown below [8]. SYBA(F) = ෍ ln ൬p(f୧|ES)p(f୧|HS)൰୑୧ୀଵ  



 
Method S2. LSTM cell from a mathematical point of view. [9] (see Figure 1) 

Three types of gates are distinguished: input, forget and output gate. All they are sigmoid ቀsigmoid(t) =  ଵଵାୣష౪ቁ , activation functions, so the output is in the range from 0 to 1. This is used to fulfill 

the necessity of positive output; this is due to fact that the answer is whether the particular feature should be 

kept or discarded. Zero as a result blocks the gate and one allows passing information through it.  

The equations for each gate are given below:  i୲ =  δ(w୧[h୲ିଵ, x୲] + b୧) – for the input gate, the latest information to be stored, f୲ = δ(w୤[h୲ିଵ, x୲] + b୤) – for the forget gate, throwing away information from the cell, o୲ = δ(w୭[h୲ିଵ, x୲] + b୭) – for the output gate, activation supplying and final output creation at given 

timestamp “t” δ – stands for sigmoid function, w୶ – weight for the respective gate(x), h୲ିଵ – output of the previous LSTM 

block, x୲ – input at the current timestamp, 𝑏௫ – biases for respective gate 

Equations for the cell state, candidate cell state, and final output:  c୲෥ = tanh (wୡ[h୲ିଵ, x୲] +  bୡ) ; c୲෥  – candidate for cell state at timestamp c୲ = f୲ ∗ c୲ିଵ + i୲ ∗ c୲෥ ; c୲ – cell state at timestamp h୲ = o୲ ∗ tanh (c୲) ; h୲   - hidden state at timestamp 

To get the output SoftMax activation is applied: Output = softmax(h୲)  

 
Figure 1. The LSTM scheme. 

Method S3. Tanimoto similarity [10] (see File S47, see Figure 2) 

Computation is done as an inverse of the distance of descriptor space measurement. For purpose of this work, 

molecular fingerprints are compared. Tc(A, B) =  ୡୟାୠିୡ, where a and b are representing several features present in compounds A and B and c is the 

number of features that are common for both. 

This means that in the case of fingerprints usage feature means on-bits numbers similarly to arrays used when 

molecular sequences are transformed into numerical arrays. 

Output is given in the range from 0 to 1. 

Structures are considered to be similar if T > 0.85, but this does not give information about possible similar 

bioactivity, this parameter depends on many more variables. 



Should be mentioned that one as the outcome does not necessarily mean that our structures are identical, it 

means that they have the same fingerprints. 

 
Figure 2. Similarity between two structures; tridecan-1-amine and [(pentylamino)methyl](tridecyl)amine.  

Structures are transformed into molecular objects (RDkit library [11]) and corresponding fingerprints are 

created then they are compared, and the result is Tc(A, B) = 0. (44). 

 

Method S4. Molecular docking visualization [1] 

In the figure shown below (see Figure 3) the search space for molecular docking is visualized. This is where 

the ligand will be attached to the macromolecule. The Lamarckian genetic algorithm is used there [12]. 

 
Figure 3. Search space in molecular docking for 7NPC with native ligand visualization, inside which grids are calculated and 

used by genetic algorithm which searches for the best ligand pose. 
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