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1. MATERIALS 

Table S1. Summary of anti-CSC drugs tested in vitro. Representation of the chemical structure 

composition, name (drug abbreviation into brackets), CAS number and bibliographical references 

of the anti-CSC drugs selected in this work. 

Anti-CSC drug Anti-CSC drug 

 

6-shogaol (6-SHO) 

555-66-8 

[1,2] 
 

8-quinolinol (8Q)  

148-24-3 

[3] 

 

Acetaminophen (ACE) 

03-90-2 

[4,5] 
 

Citral (CIT) 

5392-40-5 

[6,7] 

 

Defactinib (DFT) 

1073154-85-4 

[8,9] 

 

Disulfiram (DSF) 

97-77-8 

[10–12] 
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Everolimus (EVE) 

159351-69-6 

[13,14] 

 

Flubendazole (FLU) 

31430-15-6 

[15–17] 

 

Glabridin (GLA) 

59870-68-7 

[18,19] 

 

Isoliquiritigenin (ISO) 

 961-29-5 

[20,21]  

Metformin hydrochloride (MET) 

1115-70-4 

[22,23] 

 

Niclosamide (NCS) 

50-65-7 

[24,25] 
 

Nitidine chloride (NTC) 

13063-04-2 

[26,27] 

 

Panobinostat (PNB) 

404950-80-7 

[28,29] 
 

Salinomycin (SAL) 

53003-10-4 

 

[29–31] 

 

VS-5584 (VS) 

1246560-33-7 

[32,33] 
 

YM-155 hydrochloride (YM) 

355406-09-6 

[34,35] 
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2. RESULTS 

 

Figure S1. Differential responses of MCF-7 and MDA-MB-231 cell lines to tested 

compounds. Both cell lines were treated with increasing concentrations of selected drugs for 72 

h. Afterwards, IC50 values for each compound in both cell lines were calculated. IC50 values are 

represented as the mean ± SEM of three independent experiments. 
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Figure S2. Stem cell-like gene expression profile of enriched CSC and non-CSC subpopulations 

from MDA-MB-231 fluorescent model measured by qRT-PCR. The stem cell phenotype of 

tdTomato+ cells was confirmed by a significative overexpression of all the stem cell markers 

analysed. Results are expressed as NRQ (normalized relative quantities) mean ± SEM (n ≥ 3). 
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Figure S3. Tumor initiation capacity of tdTomato+ and tdTomato- in HCC-

1806.RedFluc.ALDH1A1-tdTomato model. A) Mice were inoculated i.m.f.p. with 100,000, 10,000 

and 1,000 of tdTomato+ or of tdTomato− cells and tumor indicidence was evaluated 28 days post-

inoculation. B) Ex vivo tumor volumes at 28 days post-inoculation. C) Representative image of 

the size of excised tumors at 28 days post-inoculation. Differences were regarded as statistically 

significant (non-parametric Kruskal–Wallis test and unpaired students’s t-post test) when p-value 

was smaller than 0.01 (**). 

 



SUPPLEMENTARY MATERIAL     Cámara Sánchez et al.  

 

6 
 

  

Figure S4. The anti-CSC drugs 8Q and NCS displayed a synergistic inhibition of cell 

viability when combined with the chemotherapeutic drug PTX in HCC-1806 cell line. Heat 

maps of (A) PTX with 8Q and (C) PTX with NCS combined treatments. Graphs show 

representative results of cell viability (%) when cells were treated with (B) PTX and 8Q or (D) PTX 

and NCS, as individual therapy and in combination at 1:5 or 1:0.4 ratios, respectively. Data is 

represented as the mean ± SEM of three independent experiments.  
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Figure S5. Combination of 8Q or NCS anti-CSC drugs with PTX enhances their synergistic 

cytotoxic effect in MDA-MB-468 cells. Heat maps of (A) PTX with 8Q and (C) PTX with NCS 

combined studies. (B, D) Synergism of the combination of anti-CSC drugs with PTX at selected 

ratios in MDA-MB-468 cells, represented as the % of cell viability obtained when cells are treated 

with (B) PTX and 8Q or (D) PTX and NCS, alone and in combination at 1:1,250 or 1:1,000 ratios, 

respectively. Data is represented as the mean ± SEM of three independent experiments. 
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Figure S6. Anti-CSC activity of 8Q and NCS in combination with PTX in TNBC fluorescent 

CSC models. Relative CSC-tdTomato+ presence in (A) HCC-1806 and (C) MDA-MB-468 

fluorescent models, determined by flow cytometry and referred to control condition. Values below, 

equal or above 1 indicate reduction, maintenance or increase of CSC-tdTomato+, respectively. 

Data is represented as the mean ± SEM of three independent experiments. Statistic t-test analysis 

were performed comparing combination treatments with individual anti-CSC drugs at the 

corresponding equivalent drug dose. Changes in the stem cell gene expression profile of (B) 

HCC-1806 and (D) MDA-MB-468 models determined by quantitative RT-PCR. Results are 

expressed as normalized relative quantities (NRQ) and referred to control condition. 

Concentrations tested for drugs in the HCC-1806 cell line were 0.0025 and 5 μM for PTX, 25 and 

50 μM for 8Q, 2 and 5 μM for NCS, while for MDA-MB-468 were 0.005 for PTX, 6.25 μM for 8Q, 

2.5 and 5 μM for NCS, and the corresponding combined ratios. 
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Figure S7. Combination of 8Q or NCS anti-CSC drugs with PTX enhances their synergistic 

anti-CSC activity in low attachment conditions in other TNBC cell lines. Efficacy of 8Q and 

NCS, alone and in combination in reducing mammosphere-forming efficiency (MSF) in both A) 

HCC-1806 and C) MDA-MB-468 cells, and in affecting mammosphere viability (MSV) in B) HCC-

1806 and in D) MDA-MB-468 cell lines. Data is represented as the mean ± SEM of three 

independent experiments and referred to non-treated control condition. Drug concentrations used 

PTX 10 μM, 8Q 50 μM and NCS 4 μM in HCC-1806 cells, while for MDA-MB-468 cells were 0.005 

μM, 6.25 μM and 5 μM, respectively. Statistical analysis of combined therapy in comparison with 

individual anti-CSC treatments are shown in black asterisks.  
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Figure S8. Effect of the combination of 8Q or NCS with PTX in NF-κB and Wnt/β-catenin 

signaling pathways in MDA-MB-231 cells. A) Representative Western blots of total and 

phosphorylated NF-κB (p-NF-κB) p65 protein levels upon treatment with different concentrations 

of 8Q. B) Representative Western blots of β-Catenin levels after treatment with increasing 

concentrations of NCS. The β-actin protein expression level was used as loading control. C-D) 

Graphs represent the quantification band intensity signal referred to β-actin expression, 

represented as mean ± SEM of three independent experiments. Statistic t-test analysis of anti-

CSC drug therapy was performed in comparison with control non-treated cells (black) as well as 

with PTX treatment (blue). 
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Figure S9. Body weight changes from all three-study groups throughout the experiment. 

Determination of body weight change referred to the initial weight of mice (before starting the 

treatments). Results are expressed as mean ± SEM, n≥4. 
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