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Supplementary information

S1 Comparison of computational methods

Electronic structure methods

All of the electronic structure methods utilized in the research are discussed
in a broad details elsewhere as it’s going to be mentioned in references. Even
though, short recap is provided below.

Vertical excitation energies in TD-DFT problem formulated from Kohn-
Sham (or Hartree-Fock) equation after applied oscillatory perturbation are eigen-
values ω of Casida equations [58](Equation S1):(
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Where matrices A and B contain one-electron energy differences ε, two-
electron integrals for virtual-occupied and occupied-virtual interactions, respec-
tively, as well as exchange-correlation integrals, both of the latter scaled by the
amount of semi-local density functional exchange ax. The X and Y are matri-
ces containing unknown interaction amplitudes (CIS amplitudes) of transitions
between occupied and virtual orbitals (Equation S2) [31].

Aia,jb = δijδab(εa − εi) + 2(ia|jb)− ax(ij|ab) + (1− ax)(ia|fxc|jb)
Bia,jb = 2(ia|bj)− ax(ib|aj) + (1− ax)(ia|fxc|bj)

(2)

In Tamm-Danchoff approximation, de-excitation terms are neglected, yielding
form (Equation S3) of an eigenvalue problem, being twice less computationally
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demanding than original form (Equation S1):

AX = ωX (3)

Simplifications introduced by Grimme and co-workers include: neglect of exchange-
correlation response (time-independent approximation), substitution of the two-
electron integrals with a damped Coloumb interactions of charge/density monopoles
and finally, restriction of the configuration interaction space to a reasonable,
user-defined range [35-36].

Semi-empirical quantum chemistry methods

GFN2-XTB and Zerner’s INDO approaches deal with the Roothan-Hall eigen-
value problem of the form (Equation S4):

FC = SCε (4)

Where F is a Fock matrix, S is an overlap matrix, C is an atomic orbital
coefficients matrix and ε is a matrix of orbital energies.

GFN2-XTB, utilizes a minimal valence basis set of atom centered, con-
tracted Gaussian functions, which approximate Slater functions (STO-mG) with
additional polarization functions for heavy (Z>9) main group elements, and the
Fock matrix reads (Equation S5):

Fkλ = Hkλ + F IES+IXCkλ + FAESkλ + FAXCkλ + FD4
kλ (5)

Where H is an extended Hueckel matrix, indices IES, IXC denote anisotropic
electrostatic and exchange-correlation contributions, treated as shell-partitioned
Mulliken charges with interactions clamped according to Mataga-Nishimoto-
Ohno-Klopman equation.

Anisotropic electrostatic and exchange-correlation interaction terms AES
and AXC are extensively parametrized second-order expansions of multipole in-
teraction energies intended to account for effects of charge distribution anisotropy
(to better describe a non-covalent interactions, allowing to throw off H-bond
and halogen bond corrections) and compensate for a small basis set (partially
compensating for a polarization function absence at small atoms), respectively.
The last term, D4, stands for a self-consistent version of a London dispersion
correction [33-34,47].

Intermediate neglect of differential diatomic overlap, though com-
plicated for direct comparison, also described in brief below. Method utilizes
minimal valence basis set and has the following form of a Fock matrix (Equa-
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tion S6):

Fµµ = Uµµ +
∑
B 6=A

Vµµ,B +
∑
ν∈A

Pνν(γµν −
1

2
ηµν)

+
∑
B 6=A

∑
λ∈B

Pλλ(µµ|λλ), (µ, ν ∈ A, λ ∈ B)

Fµν =
1

2
Pµν(3ηµν − γµν), (µ, ν ∈ A)

Fµλ = βµλ −
1

2
Pµλ(µµ|λλ), (µ ∈ A, λ ∈ B)

(6)

The indices µ and ν are corresponding to atomic orbitals of atom A, index
λ is corresponding to atom B (B 6= A), Uµµ is the one-center one-electron
energy, γµν and ηµν are one-center Coloumb and exchange integrals, respectively
(parametrized form experimental atomic spectra).

Vµµ is a core-electron attraction term, βµν is a resonance integral comprising
purely empirical terms and an overlap matrix, and finally, (µµ|λλ) are two-center
Coloumb integrals.

Zerner’s INDO approach suggests only calculation of the two-center two-
electron integrals of a kind (µµ|λλ), explicitly assumes they are independent
of the form of atomic orbitals and are calculated via Mataga-Nishimoto for-
mula. One-center two-electron integrals are parametrized from a Pariser ap-
proximation to be a difference between the corresponding electron affinities and
ionisation potentials [37-38,40].

Both of the computational methods bear known problems of a minimal
Slater-type orbital basis set and Hartree-Fock method itself, yet as described
above, GFN2-XTB method overcomes limitations due to introduction of po-
larization functions and careful treatment of anisotropic electronic interactions,
responsible for the weak interactions holding together molecular aggregates.
Due to the benefits, GFN2-XTB was utilized in this research for geometry opti-
mization, single point energy evaluations and as a base for sTDA and sTDDFT
calculations as implemented in XTB, STDA, orca and DFTB+ packages.

ZINDO is, in turn, lacking any electron correlation and bears too crude of an
integral approximation, and thus does not include any nonbonding interactions,
rendering method barely sufficient for geometry optimizations, and absolutely
infeasible for molecular aggregate geometry analysis.

Even though, due to the involved parametrization, ZINDO/S (S stands for
”Spectroscopic”) method does a great job of description of vertical electronic
excitations in a configuration interaction singles approach, and was thus utilized
in our research to assess aggregate spectroscopic properties from one additional
perspective.

S2 Preliminary assessment data
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Figure S1: ZINDO/CIS, sTDA and sTDDFT Spectral envelopes yielded by
two-step generation process of BODIPY aggregate with 3 molecules

Figure S2: ZINDO/CIS, sTDA and sTDDFT Spectral envelopes yielded by
two-step generation process of BODIPY aggregate with 4 molecules
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Figure S3: ZINDO/CIS, sTDA and sTDDFT Spectral envelopes yielded by
two-step generation process of BODIPY aggregate with 5 molecules

Figure S4: ZINDO/CIS, sTDA and sTDDFT Spectral envelopes yielded by
two-step generation process of BODIPY aggregate with 6 molecules
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Figure S5: ZINDO/CIS, sTDA and sTDDFT Spectral envelopes yielded by
one-step generation process of BODIPY aggregate with 4 molecules

Figure S6: ZINDO/CIS, sTDA and sTDDFT Spectral envelopes yielded by
three-step generation process of BODIPY aggregate with 4 molecules

6



S3 Comparative analysis

Figure S7: Configurational probability distribution histograms for ensembles of
studied compounds
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Figure S8: Lowest energy aggregate structures for compounds from groups (I)
and (II)
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Figure S9: Lowest energy aggregate structures for compounds from groups (III)
and (IV)
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Figure S10: Configurational probability distribution histograms for ensembles
of studied compounds with applied anisotropic electric field (along x-axis)
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Figure S11: Configurational probability distribution histograms for ensembles
of studied compounds with applied anisotropic electric field (along z-axis)
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S4 Hirschfield fingerprints

Figure S12: Hirschfield fingerprints for two inside molecules of a tetramer (a)
and (b) and analysis of atom pair input (histograms on the right)
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Figure S13: Hirschfield fingerprints for two inside molecules of a tetramer (a)
and (b) and analysis of atom pair input (histograms on the right)
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Figure S14: Hirschfield fingerprints for two inside molecules of a tetramer (a)
and (b) and analysis of atom pair input (histograms on the right)
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Figure S15: Hirschfield fingerprints for two inside molecules of a tetramer (a)
and (b) and analysis of atom pair input (histograms on the right)

S5 Electronic excitation envelopes
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Figure S16: ZINDO/S envelopes of aggregate ensembles with or without applied
anisotropic electric field (solid lines) and corresponding monomeric molecules
(dashed line)
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Figure S17: sTDA and sTDDFT envelopes of aggregate ensembles (solid lines)
and corresponding monomeric molecules (dashed lines)
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S6 Natural transition orbital analysis

Figure S18: Natural transition orbitals of compounds R6 Ph (top) and R6
Naph (bottom) involved in a brightest excitation, numbers between orbitals
are occupation numbers
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Figure S19: Natural transition orbitals of compounds R6 Anht (top) and R6
Pyr (bottom) involved in a brightest excitation, numbers between orbitals are
occupation numbers

19



S7 Transition density matrices

Figure S20: Fragment-partitioned transition density matrices for five lowest
transitions of corresponding molecules calculated in ZINDO/CIS level of theory.
Numbers 1-4 indicate molecule in aggregate, ”c” index stands for BODIPY core
and ”p” index stands for substituents.
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Figure S21: Fragment-partitioned transition density matrices for five lowest
transitions of corresponding molecules calculated in ZINDO/CIS level of theory.
Numbers 1-4 indicate molecule in aggregate, ”c” index stands for BODIPY core
and ”p” index stands for substituents.
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Figure S22: Fragment-partitioned transition density matrices for five lowest
transitions of corresponding molecules calculated in ZINDO/CIS level of theory.
Numbers 1-4 indicate molecule in aggregate, ”c” index stands for BODIPY core
and ”p” index stands for substituents.
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Figure S23: Fragment-partitioned transition density matrices for five lowest
transitions of corresponding molecules calculated in ZINDO/CIS level of theory.
Numbers 1-4 indicate molecule in aggregate, ”c” index stands for BODIPY core
and ”p” index stands for substituents.
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