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Figure S1. Digital image of PVP/H-HPAC composite hydrogel. 
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Figure S2. Low-magnification TEM micrographs of H@H composite material with 

the scale bar of (a) 100 nm and (b) 20 nm, respectively.  
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Figure S3. Dependence of the voltage delay (ΔV) on the scanning rates, in which the 

ΔV values were acquired from cyclic voltammograms plotted in Figure 6 (a). 
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Figure S4. The electrochemical impedance spectra of the H@H electrode recording 

before and after the cycling test, while the inset shows the equivalent circuit model used 

for the parameter fitting. 
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Table S1. Comparison of electrochemical performances of H-HPAC and reported HPAC in symmetric supercapacitors using 1 M TEABF4/PC 

electrolyte. 

Heteroatoms 
SBET 

(m2/g) 

Mass loading 

(mg/cm2) 

Voltage 

(V) 

Specific capacitance 

(F/g) 

Capacitance retention 

(%) 
References⁋ 

N (0.23 wt.%) 

O (4.7 wt.%) 
2012 5.1 0 ~ 2.7 118 at 1 mA/cm2, 78 at 10 mA/cm2 76 at 10,000 at 5 mA 9 

O (~9 at. %) 1899 ~0.8 0 ~ 2.7 134 at 0.5 A/g, 96 at 10 A/g 81 at 10,000 cycles at 2 A/g 15 

N (4 at. %) 

O (15.5 at. %) 
1358 1.2 0 ~ 2.5 21 at 0.1 A/g, 11.5 at 5 A/g 92 at 5,000 cycles at 0.5 A/g 37 

N (1.3 wt.%) 

O (12 wt.%) 
2125 NA† 0 ~ 2.5 139 at 0.25 A/g, 90 at 10 A/g NA 38 

N (~10.8 wt.%) 1519 ~1.0 0 ~ 3.0 162 at 0.5 A/g, 103 at 10 A/g ~93 at 10,000 cycles at 2 A/g 39 

S (NA) 2554 NA 0 ~ 2.7 173 at 0.05 A/g, 115 at 10 A/g NA 40 

O (NA) 1594‡ NA 0 ~ 2.5 88 at 0.5 A/g, 52 at 10 A/g 91 at 3,000 cycles at 5 A/g 41 

N (1.1 wt. %) 

O (4.6 wt. %) 
2626 8.2 0 ~ 3.0 140 at 0.05 A/g, 92 at 10 A/g ~82 at 10,000 cycles at 2.5 A/g 42 

N (0.67 wt.%) 2566 3.5 0 ~ 2.7 147 at 0.05 A/g, 117 at 10 A/g 81 at 10,000 cycles at 5 A/g 43 

N (0.58 wt.%) 

O (4.5 wt.%) 
1316 7.5 0 ~ 2.7 119 at 1 mA/cm2, 74 at 10 mA/cm2 77 at 30,000 at 5 mA This work 

†Not available, ‡Based on QSDFT calculation, ⁋Same as those cited in Figure 7 (d). 


