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1.1 Systems modeling of IncRNAs and miRNAs

The expression level of IncRNA might be influenced by the regulations of TFs,
IncRNA and miRNAs. Hence, the candidate IncRNA regulatory model of candidate

GENSs by the regulatory equations in sample n is described as follows:
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for v=1,....,V andn=1,...N.

where s,[n] represents the expression level of the v-th IncRNA; J, indicates the
total number of TFs binding to the v-th IncRNA; W, represents the total number of
IncRNAs binding to the v-th IncRNA; H, denotes the total number of miRNAs
inhibiting the v-th IncRNA; g, denotes the transcription regulatory ability from the ;-
th TF to the v-th IncRNA; y,, is the regulation ability from the w-th IncRNA to the v-
thIncRNA; 7,, 20 represents the post-transcriptional regulation ability with which the
h-th miRNA inhibits the v-th IncRNA; z[n], x,[n], and d,[n] indicate the
expression of the j-th TF, the w-th IncRNA, and the 4-th miRNA, respectively. V' is the
total number of IncRNAs and N denotes the total number of patient samples; ¢,
represents the basal level of the v-th IncRNA coming from unknown regulations; 7, ]
is the stochastic noise of the v-th IncRNA for the sample n caused by the modeling
residue and data measurement noise.
Similarly, for the candidate miRNA regulation network (MRN) in the candidate

GWGEN, the systematic regulation model is defined as below:
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for m=1,....M andn=1,...N.

where [ [n] represents the expression level of the m-th miRNA; J, indicates the
total number of TFs binding to the m-th miRNA; W, represents the total number of
IncRNAs binding to the m-th miRNA; H, denotes the total number of miRNAs
inhibiting the m-th miRNA; o,

j-th TF to the m-th miRNA; &, is the regulation ability from the w-th IncRNA to the

mw

denotes the transcription regulatory ability from the



m-th miRNA; @, >0 represents the post-transcription regulatory ability with which
the A-th miRNA inhibits the v-th miRNA; z,[n], x,[n], and d,[n] indicate the
expression of the j-th TF, the w-th IncRNA, and the /4-th miRNA, respectively. M is the
total number of miRNAs and N denotes the total number of patient samples; ¢,
represents the basal level of the z-th miRNA due to some unknown regulations; 7, [#]
is the stochastic noise of the m-th miRNA for the sample » owing to the modeling

residue and data noise.

1.2 System identification and system order detection approach to
IncRNA and miRNA system models

To estimate the unknown parameters for the IncRNA model in the candidate
GWGEN, the IncRNA equation in equation (S1) could be rewritten as below:
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Where &,[n] determines the regression vector which could be computed by the

microarray data; ¢,, indicates the unknown parameter vector for the v-th IncRNA.

The equation (S3) of the v-th IncRNA could be augmented for N samples as below:

s,(117 [&.01 7,[1]
S,,:[Z] _ '(/7V_L+ ) : (S4)

Furthermore, we simplified (S4) to the following form:
Sv = EV,L .(pVAVL +Tv (SS)

Therefore, the unknown parameters in the vector ¢, , could be estimated by solving



the constrained liner least square estimation problem:
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where ¢, is the estimated vector consisting of the estimated regulatory parameters
in the equation (S1). Meanwhile, the miRNA repression parameters y,, are
guaranteed to be positive (i.e. y, >0 )for A=1, .., H,.

Similarly, the miRNA regulation model in equation (S2) could be rewritten as

below:
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Where £ [#] indicates the regression vector which could be obtained from the
microarray data and ¢, , denotes the unknown parameters vector for the m-th

miRNA. We could expand the equation (S7) for N samples as shown below:
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Moreover, the equation (S8) could be simplified in the following form:



Lm = Em,M : wm,M +Tm (89)

Hence, by solving the following constrained linear least square estimation problem,
we could have the estimated regulatory parameters in the vector ¢, .
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where ¢, ,, 1s the estimated vector containing estimated regulatory parameters in the
equation (S2). Meanwhile, the miRNA repression parameters «,, are guaranteed to
be positive (i.e. o, >20)for h=1, .., H,.

The derived AIC formulas for the v-th IncRNA (S11) and the m-th miRNA (S12)

are given as below:
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p,u and 6, represent the estimated residual error and the number of the regulations
on the v-th IncRNA, respectively; ¢,, is the estimated parameter vector of the v-th
IncRNA by solving (S5). Based on the AIC theory, the real system order J," +W, + H,
resulting in the smallest AIC(J, +W, +H,").

26, , +1
AICW,,, W, H,) =108(5,0) + %
i (S12)
L - ., - L -(Z , ¢
where p, , = \/( G qom,M))N( R

b, and @, represent the estimated residual error and the number of the regulations
on the m-th miRNA, respectively; ¢, ,, 1s the estimated parameter vector of the m-th
miRNA by solving (S9). Based on the AIC theory, the real system order J,"+W, +H,"
lead to the smallest AIC(J, +W, +H,").



Tables.

Table S1. The statistics of nodes and edges in the candidate GWGEN and the identified real

GWGENSs of DLBCL ABC and DLBCL GCB.

Node/Edge Candidate DLBCL ABC DLBCL GCB
GWGEN Real GWGEN Real GWGEN
LncRNA-LncRNA 2 1 1
LncRNA-TF 199 65 71
LncRNA-Protein 922 407 454
LncRNA node 259 221 228
LncRNA edge 1216 515 574
MiRNA-LncRNA 240 86 114
MiRNA-MiRNA 54 20 17
MiRNA-TF 17892 4077 4794
MiRNA-Protein 148606 65234 73190
MiRNA node 498 498 498
MiRNA edge 188374 78243 88037
TF-LncRNA 276 194 213
TF-MiRNA 2107 1908 1979
TE-TF 11839 6743 7918
TF-Protein 103024 79021 84526
TF node 798 729 749
TF edge 133731 100339 108081
Receptor node 2452 2457 2455
Protein node 15347 15187 15193
PPI edge 3997005 901174 911806
Total node 19354 19092 19123
Total edge 4320803 1080624 1108843

Table S2. The gene enrichment analysis results based on the genes in the core GWGEN of

DLBCL ABC by DAVID.

Pathway enrichment

Numbers of
proteins

p-value

Pathways in cancer

1.40E-06

PI3K-Akt signaling pathway

2.90E-04

Chemokine signaling pathway

1.80E-07

Toll-like receptor signaling pathway

4.80E-07

NF-kappa B signaling pathway

1.50E-05

Table S3. The gene enrichment analysis results based on the genes in the core GWGEN of

DLBCL GCB by DAVID.

Pathway enrichment Numbe‘r s of p-value

proteins
Pathways in cancer 108 4.10E-08
PI3K-Akt signaling pathway 85 1.20E-04
Chemokine signaling pathway 62 3.70E-08
MAPK signaling pathway 62 1.30E-03
T cell receptor signaling pathway 35 6.60E-05




Table S4. The drug candidates with toxicity and drug regulation ability information toward

their corresponding targets.

FOXL1 NF«xB1
Toxicity Regulability Toxicity Regulability
Drug (LD50,mol/kg)  (CMap) Drug (LD50,mol/kg)  (CMap)
chlorzoxazone 2.2388 0.43578 famotidine 1.9523 -0.15561
cefmetazole 2.2638 0.407316 dacarbazine 1.9602 -0.09832
nizatidine 2.435 0.225334 chlorzoxazone 2.2388 -0.09968
ondansetron 2.4555 0.338226 etoposide 2.9588 -0.01479
AKT1 MYC
Toxicity Regulability Toxicity Regulability
Drug (LD50,mol/kg)  (CMap) Drug (LD50,mol/kg)  (CMap)
famotidine 1.9523 -0.31407 dacarbazine 1.9602 -0.35287
dacarbazine 1.9602 -0.38088 paclitaxel 2.4391 -0.32761
clenbuterol 2.6024 -0.41223 etoposide 2.9588 -0.37365
ciclosporin 2.8788 -0.20654  sulfinpyrazone 3.0218 -0.34322
methotrexate 3.4955 -0.39957 methotrexate 3.4955 -0.37873
STAT3 EZH2
Toxicity Regulability Toxicity Regulability
Drug (LD50,mol/kg)  (CMap) Prug 1 D50, mol/ke) (CMap)
dacarbazine 1.9602 -0.448 famotidine 1.9523 -0.4045
hl
chlorzoxazone  2.2388 0077 € Orzzxazon 2.2388 -0.2908
famotidine 2.9503 -0.462  chloroquine 2.9547 -0.4260
etoposide 2.9588 -0.4939  methotrexate 3.4955 -0.4870
clonidine 3.503 -0.5041 clonidine 3.5030 -0.4302
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Figure S1. The real genome-wide genetic and epigenetic network (GWGEN) of DLBCL ABC. The red
lines indicate protein-protein interactions (PPIs). The blue lines denote transcriptional regulations by TFs.
The pink lines denote post-transcriptional regulations by IncRNAs; The green lines represent post-
transcriptional regulations by miRNAs. The numbers of receptors, proteins, IncRNAs, TFs and miRNAs

are 2546, 14149, 106, 1783 and 508, respectively.
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Figure S2. The real genome-wide genetic and epigenetic network (GWGEN) of DLBCL GCB. The red
lines indicate protein-protein interactions (PPIs). The blue lines denote transcriptional regulations by TFs.
The pink lines denote post-transcriptional regulations by IncRNAs. The green lines represent post-

transcriptional regulations by miRNAs. The numbers of receptors, proteins, IncRNAs, TFs and miRNAs



are 2546, 14189, 111, 1769 and 508, respectively.
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Figure S3. The core genome-wide genetic and epigenetic network (GWGEN) of DLBCL ABC. The red
lines indicate protein-protein interactions (PPIs). The blue lines denote transcriptional regulations by TFs.
The pink lines denote post-transcriptional regulations by IncRNAs. The green lines represent post-
transcriptional regulations by miRNAs. The numbers of receptors, proteins, IncRNAs, TFs and miRNAs
are 442, 2315, 5, 225 and 13, respectively.
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Figure S4. The core genome-wide genetic and epigenetic network (GWGEN) of DLBCL GCB. The red
lines indicate protein-protein interactions (PPIs). The blue lines denote transcriptional regulations by TFs.
The pink lines denote post-transcriptional regulations by IncRNAs. The green lines represent post-
transcriptional regulations by miRNAs. The numbers of receptors, proteins, IncRNAs, TFs and miRNAs
are 447, 2349, 7, 2349 and 14, respectively.
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Figure S5. The systems drug design procedure.



Training and validation accuracy (10-fold cross validation)
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Training and validation loss (10-fold cross validation)
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Figure S6. Training and Validation Learning curves (10-fold cross validation). (A)Training and
validation accuracy. (B) Training and validation loss. “-x-" lines in different colors denote the training
accuracy and loss, while “-0-" lines in different colors represent the validation accuracy and loss. The
bold lines in red and blue indicate the model’s average loss or accuracy of training and validation,

respectively.



Receiver Operating Characteristic (ROC) curve
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Figure S7. The ROC curves of different kinds of DTI models. This figure shows that the DTI model
trained by DNN can achieve an AUC of 0.99, which is much better than the AUC of 0.65 by the random
forest, much higher than the AUC of 0.68 by Nearest neighbor and much higher than the AUC of 0.66
by SVM. The results reflect that deep learning method is better than traditional machine learning methods.
It is worth noting that the dot line is the case of AUC 0.5 as a result of the classifier following random

prediction, therefore the model has no predictive value.



