
Table S1. Radiogenomics in practice - What can genetic sciences do for clinical imaging in patients with Gliomas/Astrocytomas 

[Ref.] 
Utility/ Outcome 

Measured 
Mutations/ 

Genes 
Molecular /Biological 

Processes 
Main Results or Finding 

[1] 
Prognosis / 

OS 

1740 genes classified 
GBM into subtypes: 
pro-neural, neural, 

classical, and 
mesenchymal 

Homeostasis and cell 
cycling pathways.  

Volumetric features were significantly associated with diverse sets of biological processes (false-discovery-
rate < 0.05). While necrosis (NE) and tumor bulk (TB) were enriched for immune response pathways and 

apoptosis, contrast enhancement (CE) was associated with signal transduction and protein folding 
processes. Edema (ED) was mainly enriched for homeostasis and cell cycling pathways. ED was also the 
strongest predictor of molecular GBM subtypes (AUC = 0.61). CE was the strongest predictor of overall 

survival (C-index = 0.6; Noether test, p = 4x10−4). 

[2] 
Prognosis / 

OS IDH mutation  

Regulation of NFκB 
transcription-factor 
activity, dendrite 
morphogenesis, 

apoptosis, macrophage 
activation, immune cell 

activity  

Each voxel is either high or low intensity on MRI sequences T1, T1c, T2, and Flair creating 16 habitats (2 to 
the power of 4). Imaging habitats 2, 7, and 10 were significant (p < 0.05) for determining OS after 

adjustment. Habitat 2 was associated with necrosis (p = 0.0172). Habitat 2 was positively associated with 
positive regulation of NFκB transcription-factor activity, while negatively associated with dendrite 

morphogenesis. Habitat 7 correlates positively with DNA damage response signal transduction, resulting 
in apoptosis and macrophage activation induction. Habitat 7 was correlated negatively with immune cell 

activity (monocyte differentiation). Habitat 10 had a positive association with signal transducers and 
activators of transcription-1 (STAT-1) and Natural killer cell activation while negatively correlated with 
ion channel activity (potassium channel inhibitor activity and voltage-gated calcium channel activity). 

[3] 
Prognosis / 

OS 

Metagenes: WDR72, 
C14orf39, TIMP1, 

CHIT1, ROS1 EREG  
 

The GBDT model with 72 features with the highest importance had the highest accuracy of 0.81 on both 
short and long survival time classes, and the AUC for short and long survival time classes was 0.79 and 

0.81. Six metagenes showed significant interactive effect (P < 0.05), and Pearson's correlation analysis 
revealed that three of these metagenes (TIMP1, ROS1, EREG) showed moderate (0.3 < |r| < 0.5) or high 

correlation (|r| > 0.5) with image features. 

[4] 
Prognosis / 

OS 
MGMT promoter 

methylation  
 

The fusion radiomics signature exhibited supreme power for predicting MGMT promoter methylation, 
with an AUC of 0.925 in the training cohort and 0.902 in the validation cohort. The performance of the 
radiomics signature surpassed that of clinical factors and ADC parameters. Moreover, the radiomics 

approach successfully divided patients into high-risk and low-risk groups for overall survival after TMZ 
chemotherapy for patients with Astrocytoma (p = 0.03). 

[5] 
Prognosis / 

OS 

IDH mutation, 
1p/19q codeletion, 

ATRX mutation 

Hypoxia, angiogenesis, 
apoptosis, and cell 

proliferation 

The six-feature radiomic signature stratified patients in the training cohort into low- or high-risk groups of 
overall survival (p = 0.0018). This result was successfully verified in the validation cohort (p = 0.0396). 
Radiogenomic analysis revealed that the prognostic radiomic signature was associated with hypoxia, 
angiogenesis, apoptosis, and cell proliferation. The nomogram resulted in high prognostic accuracy 

(Training cohort C-index: 0.92, Validation cohort C-index: 0.70) and favorable calibration for 
individualized survival prediction in the training and validation cohorts. 

[6] 
Prognosis / 

OS 
Hypoxia-associated 

genes  
 

Using the expression profile of 21 hypoxia-associated genes, a hypoxia enrichment score (HES) was 
obtained for the training cohort of 85 cases. Mutual information score was used to identify a subset of 



radiomic features that were most informative of HES within 3-fold cross-validation to categorize studies as 
short-term survival (STS), mid-term survival (MTS), and long-term survival (LTS). When validated on an 
additional cohort of 30 studies (11 STS, 9 MTS, 10 LTS), our results revealed that the most discriminative 

features of HES were also able to distinguish STS from LTS p=0.003). 

[7] 
Prognosis / 

OS 
MGMT promoter 

methylation  
 

Five radiomics features were selected to construct the radiomics signature and displayed the best 
performance with AUC of 0.94 and 0.86 in the primary and validation cohorts, respectively, which 

outweigh the performances of the clinical signature and fusion signature. With a median follow-up time of 
32.4 months, the radiomics signature stratified the glioma patients into two risk groups with significantly 
different prognoses (p = 0.04). The radiomics signature performed the best among the three signatures in 

predicting the MGMT promoter methylation status. 

[8] 
Prognosis /  

OS 
MGMT promoter 

methylation 
 

Twenty-two radiomic features correlated with prognosis were used to successfully stratify patients into 
high-risk and low-risk groups (p=0.004, Log-rank test). The radiomic high- and low-risk stratification and 
pMGMT status were independent prognostic factors. The predictive accuracy of the pMGMT methylation 
status was 67% when modeled by two significant radiomic features. A significant survival difference was 
observed among the combined high-risk group, combined intermediate-risk group (this group consists of 
radiomic low risk and pMGMT- unmet or radiomic high risk and pMGMT-met), and combined low-risk 

group (p=0.0003, Log-rank test). 

[9] 
Prognosis / 

OS IDH mutation  

Radiomic MRI features were used to predict IDH1/IDH2 genotype in grade II-IV astrocytomas. The 
radiomics nomogram based on the radiomics signature and age performed better than the clinic-

radiological model (training cohort, AUC = 0.913 and 0.817; validation cohort, AUC = 0.900 and 0.804). 
Additionally, the survival analysis showed that prognostic values of the radiomics nomogram and IDH 

genotype were similar (log-rank test, p < 0.001; C-index = 0.762 and 0.687; z-score test, p = 0.062). 

[10] 
Prognosis / 

OS  

Lysosomal activity and 
autophagy (Cluster 1), 
chemotaxis and pro-

inflammatory response 
(Cluster 2), activity in 
the MAPK pathway 

(Cluster 3) 

GBM patients were clustered using the selected radiomics features. This resulted in 57 patients in Cluster 1 
(38.8%), 67 patients in Cluster 2 (45.6%), and 23 patients in Cluster 3(15.6%). Cluster 1 was associated with 

heterogeneous enhancement, cluster 2 was associated with RIM-enhancing necrotic, and cluster 3 was 
associated with cystic features. There was a significant difference between survivals in the three clusters. 

[11] 
Prognosis / 

OS 

LGG with mutant 
IDH1, ATRX, TERT, 

and MGMT 
promoter 

methylation (Cluster 
1); Overexpressed 
PD-1, PD-L1, and 

Different immune 
infiltration patterns 

between C1 and C2 with 
various upregulated 
immune cells in C1. 

A total of 6 categories, including 318 radiomic features were significantly correlated with the overall 
survival of glioma patients. Two subgroups with distinct prognoses were separated by consensus 

clustering of radiomic features that were significantly associated with survival. The Kaplan–Meier plot 
showed that patients in cluster 2 suffered an inferior OS compared to patients in cluster 1 (p <0.0001). 



CTLA4 mRNA 
(Cluster 2) 

[12] 
Prognosis / 

OS IDH mutation   

Compared to the random survival forest model (RSF from the non-imaging prognostic parameters, the 
addition of radiomic features significantly improved the overall survival prediction accuracy with the RSF 
(iAUC, 0.627 vs. 0.709; difference, 0.097; 95% CI, 0.003–0.209). Of the non-imaging prognostic factors, the 

IDH mutation status was the most important feature. 

[13] 
Prognosis / 

PFS 

MGMT promoter 
methylation and 

IDH mutation 

Cell differentiation,  
cell adhesion, 
angiogenesis 

A combination of Radiomic Risk Score (RRS) with clinical (age and gender) and molecular features 
(MGMT and IDH status) resulted in a concordance index of 0.81 (P < 0.0001) on training and 0.84 (P 1= 

0.03) on the test set. Radiogenomic analysis revealed associations of RRS features with signaling pathways 
for cell differentiation, cell adhesion, and angiogenesis, which contribute to chemoresistance in GBM. The 

survival risk score created using radiomic features from Gd-T1w MRI was found to be statistically 
significantly different across the “low-risk” and “high-risk” groups both on the training (P < 0.001, n = 130) 

and the holdout test sets (P = 0.03, n = 73). A significant association of prognostic radiomic features and 
molecular signaling pathways buy high BMP4 expression was associated with a better prognosis. 

[14] 
Prognosis / 

OS 

Key genes  
not listed  

in the article 

Immune, proliferative, 
treatment responsive, 
and cellular functions  

The radiomics signature was associated with overall survival (hazard ratio [HR], 3.68; 95% CI: 2.08, 6.52; P 
= 0.001) in the radiomics validation subset. Four types of prognostic radiomics phenotypes were correlated 

with distinct pathways: immune, proliferative, treatment responsive, and cellular functions (false-
discovery rate, 0.10). Thirty radiomics-correlated genes were identified. The prognostic significance of the 

RadGene score was confirmed in an external test set (HR, 2.02; 95% CI: 1.19, 3.41; P = 0.01) and a TCGA 
test set (HR, 1.43; 95% CI: 1.001, 2.04; P = 0.048). The radiomics-associated pathways and key genes can be 

replicated in an external test set. 

[15] 
Prognosis / 
PFS and OS 

DNA copy-number 
subtypes (CN1, CN2, 

CN3) 
 

CN2-subtype was associated with the shortest median PFS (p <0.001) and OS (p <0.001). All three RR 
models showed good discrimination and calibration. Decision curve analysis indicated that all RR models 
were clinically useful. The average accuracy of the ten-fold cross-validation was 92.8% for CN2-subtype, 

72.6% for CN1-subtype, and 79.0% for CN3-subtype. 
Abbreviations: ADC: Apparent diffusion coefficient, AUC: area under the curve, ATRX: X-linked helicase II, BMP4: Bone morphogenetic protein 4, CI: confidence interval, C-index: 
Concordance index CTLA4: cytotoxic T lymphocyte antigen 4, GBM: glioblastoma multiforme, HR: hazard ratio, IDH mutation: isocitrate dehydrogenase, MGMT methylation status: O(6)-
methylguanine-DNA methyltransferase promoter methylation status, MAPK: Mitogen-activated protein kinase, MRI: Magnetic resonance imaging, OS: overall survival, PD-1: programmed 
cell death protein 1, PD-L1: Programmed death-ligand 1, PFS: progression-free survival, RR: radiomic and radiographic features, TCGA: The Cancer Genome Atlas program, TERT: Telomerase 
reverse transcriptase, TMZ: Temozolomide. 
 
 
 
 
 
 
 



 
 
 
Table S2. Radiogenomics in practice - What can genetic sciences do for clinical imaging in patients with Lung and Head & Neck Cancers 

[Ref.] 
Utility/ Outcome 

Measured 
Mutations/ 

Genes 
Molecular /Biological 

Processes 
Main Results or Finding 

[16] 
Prognosis / 

OS  cell cycling pathways 

They found significant associations between the signature features and gene-expression patterns. The 
radiomic features were significantly associated with different biologic gene sets, demonstrating that 

radiomic features probe different biologic mechanisms. Both intratumoral heterogeneity features in the 
signature were strongly correlated with cell cycling pathways, indicating an increased proliferation for 

more heterogeneous tumors. 

[17] 
Treatment 
Response EGFR mutation  

On the baseline-scan, radiomic-feature Laws-Energy was significantly predictive for EGFR-mutation 
status (AUC = 0.67, p = 0.03), while volume (AUC = 0.59, p = 0.27) and diameter (AUC = 0.56, p = 0.46) 

were not. Although no features were predictive on the post-treatment scan (p > 0.08), the change in 
features between the two scans was strongly predictive (significant feature AUC-range = 0.74–0.91) for 

response to Gefitinib. 

[18] 
Prognosis / 
DFS and OS  

apoptosis and 
proliferation genetic 

pathway, redox stress 
pathway 

A DFS prediction model was made, and ROC curves estimated the AUC to be 0.866. The following 
features were significantly associated with DFS: N descriptor, kurtosis, surface area and spherical 
distortion. A prediction model of OS had AUc = 0.674 and was significantly associated with age, T 

descriptor, interquartile range (IQR), HU at the 25th percentile, and HU at the 97.5th percentile. Range 
and right lung volume were significantly associated with alternation of apoptosis and proliferation 

genetic pathway (p = 0.03, and p = 0.03). Energy was associated with the redox stress pathway (p = 0.06). 
None of the clinic radiological features showed any significant association with the alteration of 

differentiation and chromatin remodelers’ pathway. 

[19] 
Prognosis / 

DFS  
genes related to 

metabolic processes and 
the immune system 

The survival analyses showed a significant difference between the radiomic high and low-risk groups 
(P<0.001). The pre-ranked GSEA showed the strongest associations between the radiomics signature and 
various genes related to metabolic processes and the immune system. The radiomics nomogram showed 
good discrimination performance (C-index: 0.713; 95% CI: 0.646–0.780) in the validation cohort. Patients 

with a low-risk score showed no survival difference with or without adjuvant chemotherapy (P=0.7), 
patients with high risk obtained a favorable response to adjuvant chemotherapy (P=0.04). 

[20] 
Prognosis / 

OS 
ctDNA TP53 

mutations 
 

Unsupervised clustering of radiomic signatures resulted in two clusters that were associated with 
ctDNA TP53 mutations (p = 0.03) and changes in cfDNA concentration after 2 weeks of chemoradiation 

(p = 0.02). The radiomic features dissimilarity (HR = 0.56; p = 0.05), joint entropy (HR = 0.56; p = 0.04), 
sum entropy (HR = 0.53; p = 0.02) and normalized inverse difference (HR = 1.77; p = 0.05) were associated 

with overall survival. 



[21] 

Prognosis + 
Treatment 
Response /  

PFS, TTF, and 
DCB 

EGFR mutation  

An 18F-FDG-PET/CT-based deep learning model demonstrated high accuracy in EGFR mutation status 
prediction across patient cohorts from different institutions. A deep learning score (EGFR-DLS) was 

significantly and positively associated with longer PFS in patients treated with EGFR-TKIs, while EGFR-
DLS is significantly and negatively associated with higher durable clinical benefit, reduced 

hyperprogression, and longer PFS among patients treated with immune checkpoint inhibitors.  

[22] 
Prognosis /  
PFS and OS 

FOXF2, TBX4, 
LOC285043, and 

TM4SF18 
 

They created a novel radiomics model that identified a high-risk group of early-stage patients associated 
with poor outcomes. FOXF2, TBX4, and TM4SF18 genes were significantly associated with the model.  

[23] 
Prognosis / 
Relapse + 
Histotype 

CXXC4, PAK3, TP63, 
EPHA10, FBN2, and 

IL1RAP 
 

By using machine learning-based software (RULe eXtractor 4.0) they found several radiomic-based and 
genomic-based rules to predict the histotype. They showed a modest ability of PET radiomic features to 
predict relapse, while they identified a robust gene expression signature able to predict patient relapse 

correctly. The best-performing model combines radiomic and genomic data with an AUC of 0.87 in 
predicting relapse. It was based on genes CXXC4, PAK3, and GHR gene and radiomic feature LRLGE. 
The best performing combined model for predicting histotype consisted of the two genes HIF1A and 

TP63. No correlation was found between radiomic features/genomic data and relapse, but TP63, 
EPHA10, FBN2, and IL1RAP is associated to histotype (adenocarcinoma / squamous cell cancer). 

Abbreviations: AUC: area under the curve, CI: confidence interval, C-index: Concordance index, CT: computerized tomography, DCB: Durable clinical benefit, DFS: Disease-free survival, 
EGFR: epidermal growth factor receptor, FDG: fluorodeoxyglucose, GSEA: Gene Set Enrichment Analysis, HR: hazard ratio, HU: Hounsfield units, OS: overall survival, PET: positron emission 
tomography, PFS: progression-free survival, ROC: receiver operator characteristic curve, TTF: time-to-treatment failure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Table S3. Radiogenomics in practice - What can genetic sciences do for clinical imaging in patients with Breast, Ovarian, and Endometrial Cancer 

[Ref.] 
Utility/ Outcome 

Measured 
Mutations/ 

Genes 
Molecular /Biological 

Processes 
Main Results or Finding 

Breast Cancer 

[24] 

Risk  
Assessment/  

Risk of 
recurrence 

Multigene assay: 70-
gene MammaPrint 

microarray assay, 21-
gene Oncotype DX 
assay, and the 50-

gene PAM50 assay 

MammaPrint and 
Oncotype DX were 

applied to the 
messenger RNA 
sequencing data 

Multiple linear regression analyses demonstrated significant associations (R2 = 0.25–0.32, r = 0.5–0.56, p 
<0.001) between radiomics signatures and multigene assay recurrence scores. Important radiomics 

features included tumor size and enhancement texture, which indicated tumor heterogeneity. Use of 
radiomics in the task of distinguishing between good and poor prognosis yielded AUC of 0.88 (SE 0.05), 

0.76 (SE 0.06), 0.68 (SE 0.08), and 0.55 (SE 0.09) for MammaPrint, Oncotype DX for predicting breast 
cancer recurrence, PAM50 for identifying risk of relapse based on subtype, and PAM50 risk of relapse 
based on subtype and proliferation, respectively, with all but the latter showing statistical difference 

from chance. 

[25] 
Prognosis /  
PFS and OS 

Genes from the 
Tumor-adjacent 

Parenchymal Gene 
Module and 73 

Genes in the 
Signature for the 

Parenchymal Image 
Feature 

Tumor necrosis factor 
(TNF) signaling 

pathway 

The tumor necrosis factor signaling pathway was identified as the top enriched pathway 
(hypergeometric P, .0001) among genes associated with the image feature. A 73-gene signature based on 

the tumor profiles in TCGA achieved a good association with the tumor-adjacent parenchymal image 
feature (R2 = 0.873), which stratified patients into groups regarding recurrence-free survival (log-rank P 

= .029) and overall survival (log-rank P = .042) in an independent TCGA cohort. The prognostic value 
was confirmed in another independent cohort (Gene Expression Omnibus GSE 1456), with log-rank P = 

.00058 for recurrence-free survival and log-rank P = .0026 for overall survival. 

[26] 
Response to 
Treatment /  

pCR 

Overexpression of 
the HER2 gene 

HER2 is a member of 
ErbB family of receptor 

tyrosine kinases 

The overall rate of pathological complete response (pCR) was 60.5% The final model to predict pCR 
included six MRI parameters (two clinical, four radiomic) for a sensitivity of 86.5% (32/37), specificity of 
80.0% (20/25), and diagnostic accuracy of 83.9% (52/62). The final model to predict HER2 heterogeneity 

utilized three MRI parameters (two clinical, one radiomic) for a sensitivity of 99.3% (277/279), specificity 
of 81.3% (26/32), and diagnostic accuracy of 97.4% (303/311).  

Ovarian Cancer 

[27] 
Prognosis / 

OS 

Amplification of 
CCNE1 cyclin E1 

gene  

CLOVAR (Classification 
of Ovarian Cancer 

transcriptomic profiles) 

Of the 12 inter-site texture heterogeneity metrics evaluated, those capturing the differences in texture 
similarities across sites were associated with shorter overall survival (inter-site similarity entropy, 

similarity level cluster shade, and inter-site similarity level cluster prominence; p ≤ 0.05) and incomplete 
surgical resection (similarity level cluster shade, inter-site similarity level cluster prominence and inter-
site cluster variance; p ≤0.05). Neither the total number of disease sites per patient nor the overall tumor 

volume per patient was associated with overall survival. Amplification of 19q12 involving cyclin E1 gene 
(CCNE1) predominantly occurred in patients with more heterogeneous inter-site textures. 



[28] 
Prognosis / 
PFS and OS BRCA mutation   

Higher inter-site cluster variance (SCV) was associated with lower PFS (p = 0.006) and OS (p = 0.003). 
Higher inter-site cluster prominence (SCP) was associated with lower PFS (p = 0.02), and higher inter-site 

cluster entropy (SE) correlated with lower OS (p = 0.01). Higher values of all three metrics were 
significantly associated with lower complete surgical resection status in BRCA-negative patients (SE p = 
0.039m SCV p = 0.006, SCP p = 0.02), but not in BRCA-positive patients (SE p = 0.7, SCV p = 0.91, SCP p = 

0.67). None of the metrics were able to distinguish between BRCA mutation carrier and non-mutation 
carrier. 

[29] 
Prognosis / 
PFS and OS  

Extracellular-matrix 
(ECM)−receptor 

interaction and focal 
adhesion pathways 
(high RPV tumors); 

Proliferation and DNA 
damage response (DDR) 

pathways (low RPV 
tumors) 

Four descriptors; “Radiomic Prognostic Vector” (RPV) reliably identifies the 5% of patients with median 
overall survival of less than 2 years. RPV consists of four radiomic features: (a) FD_max_25HUgl 

(coefficient: −0.0876), (b) GLRLM_SRLGLE_LLL_25HUgl (coefficient: 0.0869), (c) 
NGTDM_Contra_HLL_25HUgl (coefficient: 0.165), and (d) FOS_Imedian_LHH (coefficient: 0.250). All 

the features appear to have approximately even weighted and relate to tumor macro-architecture at the 
25 Hounsfield Unit gray level (and discrete wavelet filters). In biological terms, the individual 

components of RPV combine to define the tumor mesoscopic structure: (a) maximal fractal dimension of 
the tumor and its microenvironment, which was negatively correlated with survival, together with the 
following positively correlated features; (b) proportions of runs that have short lengths in the low pass 
filtered image; a function which gives coarse low-density textures, e.g. intermixed fibrotic stroma and 
tumor cells; (c) the average visual contrast across the tumor weighted by sharpening in the x-axis and 

blurring in the y and z axes reflecting local heterogeneity, and (d) the median of the distribution of voxel 
intensities across the entire tumor weighted by blurring in the x-axis and sharpening in the y and z axes, 

reflecting global heterogeneity, respectively. 
Endometrium Cancer 

[30] 
Prognosis / 

RFS and DSS 
Copy-number high 

or p53-altered 

Upregulated: HSPA5, 
GATA3, and 
HSP90AA1; 

Downregulated: 
SCGB2A1, GSTK1, 

MMP7, GDF15, ANXA1, 
SAT1, CNDP2, and 

PBX1  

Radiomic features identified two distinct patient clusters: cluster 1 and cluster 2. Cluster 2 had 
subclusters 2a and 2b. Patients in cluster 2 had significantly reduced disease-specific survival (p < 0.001). 
Furthermore, patients in clusters 1, 2a, and 2b had significantly different disease-specific and recurrence-
free survival (overall p < 0.001). A gene signature related to the most aggressive clusters including an 11-

gene high-risk signature was defined and associated with poor survival. A subsequent dataset using 
machine learning-based tumor segmentation, instead of manual segmentation, also showed that patients 
in cluster 2 had significantly reduced disease-specific (p < 0.0001) and recurrence-free survival (p=0.003). 
In the ML-cohort low-risk gene signature tended to be more frequent within cluster 1 than 2 (p = 0.089). 

Abbreviations: AUC: area under the curve, BRCA: breast cancer gene, DSS: Disease-specific survival, GSE: Gene Expression Omnibus, HER2: human epidermal growth factor receptor 2, MFS: 
Metastasis-free survival, MRI: Magnetic resonance imaging, OS: overall survival, pCR: pathologic complete response, PFS: progression-free survival, RFS: Recurrence-free survival, TCGA: The 
Cancer Genome Atlas program. 
 
 
 
 



Table S4. Radiogenomics in practice - What can genetic sciences do for clinical imaging in patients with Urogenital Cancers 

[Ref.] 
Utility/ Outcome 

Measured 
Mutations/ 

Genes 
Molecular /Biological 

Processes 
Main Results or Finding 

Renal Cell Carcinoma 

[31] 
Prognosis / MFS 

and OS 

Non-specific gene 
names are listed in 

the text 

Eukaryotic translation 
elongation, initiation, 

and termination; ECM–
receptor interaction, 
Regulation of actin 
cytoskeleton; Focal 

adhesion, PI3K/AKT, 
and integrin signaling 

pathway 

Three radiomic features (INNER_MaxProb_GLCM, OUTER_Energy_Hist and Under80HURatio) 
showed positive weights (0.0101, OR: 1.0101; 0.7281, OR: 2.0711; 0.5538, OR: 1.7399), and one feature 

(INNER_Min-hist) showed negative weights (-0.1947, OR: 0.8231) towards postsurgical metastasis. In the 
discovery cohort, the radiomic risk score of MFS had an optimal cutoff of 0.4176 (HR=8.2954, 95%CI = 
2.0957-32.8362, p = 0.0077), and in the validation cohort optimal cutoff of 1.3128 (HR=2.2264 x 10^5, 95 

%CI = 1.3878 x 10^3 - 3.5719 x 10^7, p = 0.0005). Trait-associated genes was found correlated to four 
features.  

[32] Prognosis / OS 

Hypoxia-related 
genes (IFT57, 

PABPN1, RNF10, 
RNF19B, UBE2T 

 

The radiogenomics biomarker consisting of 13 radiomic features that were optimal predictors of 
hypoxia-gene signature expression level (low- or high-risk) demonstrated AUC values of 0.91 in both the 

training and validation groups respectively. IFT57 and RNF19B were identified as low-risk prognostic 
genes whereas PABPN1, RNF10, and UBE2T were considered high-risk prognostic factors. In the 

independent validation cohort, the radiogenomics biomarker was significantly associated with prognosis 
in patients with ccRCC (p = 0.0059). 

[33] 
Prognosis / 

PFI  

Genes were most 
strongly related to 

immunological synapse 
and chemokine activity 

For the radiomic signature, the AUC for the training cohort was 0.897 and for the validation cohort 0.712. 
The C-index value of the radiomic signature was 0.861 (95 % CI 0.789-0.927). The Kaplan-Meier survival 
curve analysis of the radiomic signature revealed that the PFI of the high-risk group was dramatically 

shorter than that of the low-risk group (P < 0.05). The functional analysis indicated that radiomic 
signature was significantly associated with T cell activation. 

[34] 
Prognosis / 
PFI and OS 

VHL, MUC16,  
FBN2, FLG 

 

Radiomic profiling revealed three ccRCC subtypes (C1, C2, C3) with distinct clinic-pathological features 
and prognoses. VHL, MUC16, FBN2, and FLG were found to have different mutation frequencies in 
these radiomic subtypes. While VHL had a high mutation rate in all subtypes, it was less frequently 

observed in the C1 subtype than in the C2 and C3 subtypes. In addition, FLG, MUC16, and FBN2 
mutations were specifically observed in the C1, C2, and C3 subtypes, respectively. The C1 subtype had 

significantly lower OS (p = 0.027) and PFI (p = 0.002) than the C2 and C3 subtypes.  

[35] 
Prognosis / 

OS VHL mutation 

Epithelial-mesenchymal 
transition (EMT) score, 
purity, mRNA subtype, 

miRNA subtype 

A strong statistical correlation (R^2 = 0.83) between the feature crosses and genomics characteristics was 
shown. The SEM confirmed significant association between CT feature, pathological (β = -0.75), and 
molecular subtype (β = -0.30). Patients with high CT texture feature such as the first-order statistics 
t_first-order_TE (total energy of tumor), r_glszm_LALGLE values tended to have a poor prognosis. 



[36] 
Prognosis / 

OS 
VHL, BAP1, PBRM1, 

SETD2 

Molecular subtypes 
reflected by mRNA 

patterns 

Using radiomic features, random forest algorithm showed good capacity to identify the mutations VHL 
(AUC=0.971), BAP1 (AUC=0.955), PBRM1 (AUC=0.972), SETD2 (AUC=0.949). In the validation set, the 
AUC of radiomics model was significantly higher than the genomics model at 5-year (0.775 vs. 0.684, 

p=0.030) time point. The integrative model of radiomics and genomics achieved better predictive 
performance, the 1-year, 3-year, and 5-year AUCs of which were 0.807, 0.814, and 0.784. The increase in 

AUC was compared with radiomics and genomics models (all p < 0.05). The high-risk groups in the 
radiomics model (HR = 3.62, 95%CI: 2.04-6.73, p = 0.002) and radiomics-genomics model (HR = 3.93, 

95%CI: 2.27-12.12, p = 0.017) were significantly related with poorer survival. 
Bladder Cancer 

[37] 
Prognosis / 

PFI 

Non-specific gene 
names are listed in 

the text 
Angiogenesis 

The radiomics and transcriptomics signatures significantly stratified BLCA patients into high- and low-
risk groups in terms of the progression-free interval (PFI). The two risk models remained independent 

prognostic factors in multivariate analyses after adjusting for clinical parameters. A nomogram was 
developed and showed an excellent predictive ability for the PFI in BLCA patients. Functional 

enrichment analysis suggested that the radiomics signature we developed could reflect the angiogenesis 
status of BLCA patients. 

Prostate Cancer 

[38] 

Risk  
Assessment / 

Risk of 
metastasis 

Non-specific gene 
names are listed in 

the text 
 

A total of 14 radiomics features significantly correlated with the Gleason score (highest correlation r [ 
0.39, p [ 0.001). A total of 31 texture and histogram features significantly correlated with 19 gene 

signatures, particularly with the PORTOS (Post-Operative Radiation Therapy Outcomes Score) signature 
(strongest correlation r [ e0.481, p [ 0.002). A total of 40 diffusion-weighted imaging features correlated 

significantly with 132 gene expression levels. Machine learning prediction models showed fair 
performance to predict a Gleason score of 8 or greater (AUC 0.72) and excellent performance to predict a 

Decipher score of 0.6 or greater (AUC 0.84). 
Abbreviations: AUC: area under the curve, ccRCC: clear cell renal cell carcinoma, CI: confidence interval, CT: computerized tomography, HR: hazard ratio, MFS: Metastasis-free survival, OR: 
odds ratio, OS: overall survival, PFI: progression-free interval, VHL: Von Hippel-Lindau.  
 
 
 
 
 
 
 
 
 
 
 



 

Table S5. Radiogenomics in practice - What can genetic sciences do for clinical imaging in patients with Gastrointestinal Tumors 

[Ref.] 
Utility/ Outcome 

Measured 
Mutations/ 

Genes 
Molecular /Biological 

Processes 
Main Results or Finding 

Esophagus Cancer 

[39] 
Treatment 
Response / 

pCR 
 

type I interferon, 
lymphocyte apoptosis, 
and natural killer cell 
activation pathways 

The optimal intratumoral and peritumoral radiomics models yielded similar areas under the receiver 
operating characteristic curve of 0.730 (95% CI, 0.609-0.850) and 0.734 (0.613-0.854), respectively. The 

combined model was composed of 7 intratumoral and 6 peritumoral features and achieved better 
discriminative performance, with an AUC of 0.852 (95% CI, 0.753-0.951), an accuracy of 84.3%, sensitivity 

of 90.3%, and specificity of 79.5% in the test set. Gene sets associated with the combined model mainly 
involved lymphocyte-mediated immunity. The association of the peritumoral area with response 

identification might be partially attributed to type I interferon–related biological processes. 

[40] 

Prognosis + 
Treatment 
Response / 

DFS, OS and pCR 

KLK8, STOX1, 
SPRY2, GPRC5A, 

IGSF10, COBL, 
TXNIP, EPS8, GPX3, 

KLK6, M1AP, 
ZNF483, KIF26B, 

SGCB, FGF4, PRCP 

Non-specific pathways 
are listed in the text 

Radiomic features that were correlated to differentially expressed (DE) genes were selected for the 
nomogram. The nomogram significantly stratified patients into high- and low-risk groups for disease-

free survival (DFS) (p < 0.001). AUCs for predicting 5-year DFS were 0.912 in the training set, 0.852 in the 
internal test set, and 0.769 in the external test set. 

Gastric Cancer 

[41] 

Prognosis + 
Treatment 
Response / 
PFS and OS 

 

Cell cycling pathways, 
chemokine signaling, 
and chemotherapeutic 
drug metabolism; drug 
metabolism cytochrome 
P450 and other enzymes 

The radiomics signature had discriminative power of PFS and OS (AUCs = 0.753). The low radiomics 
score subgroup, obtained a terrible response to adjuvant chemotherapy (ACT), while the high score 

subgroup showed no significant survival difference with or without ACT. The clinical-radiomics 
nomogram showed association with OS at 1-, 3-, and 5- year survival and had AUCs of 0.80, 0.816, and 

0.965, respectively in the prediction performance analysis. The pre-ranked GSEA showed that the 
significantly enriched pathways (FDR <0.1) among the top associations with these four radiomic factors 

were mostly correlated with drug metabolism and chemokine regulation. 
Colorectal Cancer 

[42] 
Prognosis / 

OS BRAF mutation 

BRAF tumors showed 
lower levels of hypoxia 
and more angiogenesis 
than wild-type BRAF 

tumor 

Tumor radiomics texture features, including the standard deviations and the mean value of positive 
pixels were significantly lower in BRAF mutant tumors than in wild-type BRAF tumors at spatial scaling 
factors (SSFs) of 0, 4, and 6 (P = .006, P = .007, and P = .005, respectively). Patients with skewness less than 
or equal to 20.75 at an SSF of 0 and a mean of greater than or equal to 17.76 at an SSF of 2 showed better 

5-year OS (HR, 0.53 [95%CI: 0.29, 0.94]; HR, 0.40 [95%CI: 0.22, 0.71]; log-rank P = .025 and P = .002, 
respectively). Tumor location (right colon vs left colon vs rectum) had no significant impact on the 

clinical outcome (log-rank P = .53). 



Hepatocellular Carcinoma 

[43] 

Risk  
Assessment / 

Early  
recurrence 

 
PD-L1 protein, PD1, 

CTLA4 mRNA 
expression level 

Radiomics features correlated with the expression of immunotherapy targets PD-L1 at the protein level 
as well as PD1 and CTLA4 at the mRNA expression level (r = -0.48-0.47, p < 0.037). Radiomics features, 
including tumor size, showed significant diagnostic performance for assessment of early hepatocellular 
carcinoma recurrence (AUC 0.76-0.80, p < 0.043), while immune-profiling and genomic features did not. 

Abbreviations: AUC: area under the curve, BRAF mutation: serine-threonine kinase protein, CI: confidence interval, CTLA4: cytotoxic T lymphocyte antigen 4, DFS: Disease-free survival, 
FDR: false diagnostic rate, OS: overall survival pCR: pathologic complete response, PD-1: programmed cell death protein 1, PD-L1: Programmed death-ligand 1, PFS: progression-free survival, 
ROC: receiver operating characteristic curve. 
 

 
Table S6. Radiogenomics in practice - What can genetic sciences do for clinical imaging in patients with Melanoma and Solid Tumors 

[Ref.] 
Utility/ Outcome 

Measured 
Mutations/ 

Genes 
Molecular /Biological 

Processes 
Main Results or Finding 

Melanoma 

[44] 
Prognosis / 

OS BRAF mutation CD8 Expression 

Two radiomics markers are associated with poor outcomes and immune disturbances in melanoma 
patients. Analysis indicated patients with high standard deviation or high mean of positive pixels (MPP) 
had worse progression-free survival (P = 0.00047 and P = 0.0014, respectively) and worse overall survival 

(P = 0.0223 and P = 0.0465, respectively). Whole-exome sequencing showed high MPP was associated 
with BRAF mutation status (P = 0.0389). RNA sequencing indicated patients with immune “cold” 
signatures had worse survival, which was associated with the CT biomarker, MPP4 (P = 0.0284). 

Multiplex immunofluorescence confirmed a correlation between CD8 expression and image biomarkers 
(P = 0.0028). 

Solid Tumors* 

[45] 

Prognosis + 
Treatment 
Response / 
PFI, OS and 
Response to 
Treatment 

 
Gene expression 

signature of CD8 cells  

The developed radiomic signature for CD8 cells was validated with the gene expression signature of 
CD8 cells (AUC=0.67, 95% CI 0.57-0.77; p=0.0019.) In patients treated with anti-PD-1 and PD-L1, a high 
baseline radiomic score was associated with a higher proportion of patients who achieved an objective 

response at 3 months (p=0.049) and a higher proportion of patients who had an objective response 
(p=0.025) or stable disease (p=0.013) at 6 months. A high baseline radiomic score was associated with 

improved overall survival in univariate (HR 0.58, 95% CI 0.39-0.87; p=0.0081) and multivariate analyses 
(HR 0.52, 95% CI 0.35-0.79; p=0.0022) 

Abbreviations: AUC: area under the curve, BRAF mutation: serine-threonine kinase protein, CI: confidence interval, HR: hazard ratio, OS: overall survival PD-1: programmed cell death protein 
1, PD-L1: Programmed death-ligand 1, PFI: progression-free interval. 
*Head and neck-squamous-cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD), liver hepatocellular carcinoma (LIHC), bladder endothelial carcinoma 
(BLCA), sarcomas, etc. 
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