
Supplement Figure S1 

 

Re-definition of subtypes that were derived predominantly from clustering of gene expression data. 

From a machine learning perspective, it would be problematic to first define a subtype using gene 

expression profiles, and then predict the subtype using the same data (circular design). To preserve 

sound design for this study, the Ph-like subtype was not used as the target for prediction by RNA-seq 

data. A) Overlap between RNA-based “like” subtypes (vertical) and combinations of gene alterations 

(horizontal). B) Patients that were Ph-like or otherwise derived from RNA-seq clustering were 

assigned to the CRLF2 subtype if they harboured alterations involving the CRLF2 gene as this was 

the most frequent genetic lesion within these patients.   



Supplement Figure S2 

 

Schematic illustration of batch corrections. The RNA-seq datasets contained undesirable correlations 

between gene expression and multiple potential confounders including library strandedness, subtype 

prevalence across different locations and other cohort effects. To prevent the classification models 

from fitting to these patterns, we first applied surrogate variable analysis (SVA) to remove variation 

that was not related to the traits of interest within each batch. Note that applying SVA to the entire 

dataset could lead to over-optimistic classifiers, since it would amplify existing correlations between 

batch membership and the subtypes that arise from the cohort structure. To remove the correlations 

between batch membership and biological subtypes, we created matched subsets from each batch that 

had pair-wise identical age, sex, genetic subtype and known lesion profile. It thus became safe to do 

standard batch correction using the Numero library for these subsets. Lastly, the adjustment 

parameters from the subset analysis were used for adjusting the batch effects of the original data. 



Supplement Figure S3 

 

Comparison of Pearson correlations between log-transformed read counts and patient meta-data 

before and after batch correction. Age was not used as a matching criterion in those batch correction 

steps that involved comparisons between pediatric and non-pediatric batches. 
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Comparison of Pearson correlations between log-transformed read counts and patient meta-data 

before and after batch correction. Age was not used as a matching criterion in those batch correction 

steps that involved comparisons between pediatric and non-pediatric batches. 
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Comparison of Pearson correlations between log-transformed read counts and patient meta-data 

before and after batch correction. 



Supplement Figure S6 

 

Uniform Manifold Approximation and Projection (UMAP) trained with batch corrected North 

American data and using genes that were optimised the centroid classifier. The scatter plot was 

produced by applying the UMAP to the unadjusted North American dataset and Australian datasets, 

respectively. The grey symbols represent undefined genetic subtypes. 



Supplement Figure S7 

 

Optimization of a hyperparameter (number of input genes) for the centroid classifier. The model was 

trained with half the batch corrected North American dataset and tested with the other half. The curves 

depict overall positive predictive values that were calculated by applying the centroid models with 

different numbers of inputs to unadjusted North American data. We chose K = 45 as the final 

hyperparameter value. 



Supplement Figure S8 

 

Centroid classifier as trained for the Allspice R library. All available samples that had a verified 

genetic subtype were used as a training set. Altogether 57 inputs out of 6,673 stable genes were 

prioritized according to the clumping algorithm described in Methods. The model was trained with 

batch corrected data and performance metrics were calculated from unadjusted expression levels. 

 



Supplement Figure S9 

ETV6-RUNX1 case study from a North American cohort. This is an example of a patient with a 

distinct gene expression profile associated with a directly observable driver fusion. 



Supplement Figure S10 

Hypodiploid case study from the North American dataset. Patients with chromosomal alterations are 

easy to detect via karyotyping, however, the extensive genetic alterations may affect multiple genes 

and pathways which may make it difficult to ascertain specific targets for molecular therapies. In this 

example, the RNA-seq profile suggests that the transcriptional consequences are compatible with a 

broad group of individuals that have BCL2, KMT2A and/or PAX5 lesions. The additional information 

from RNA-seq provides clues on the combination of genomic drivers that may be specific to this 

patient. 



Supplement Figure S11 

Ambiguous case study from the North American dataset. It is possible for a patient to exhibit multiple 

genetic lesions that drive ALL. Furthermore, the transcriptional consequences from different lesions 

may converge to similar profiles, which means that some patients will exhibit mixed gene expression 

characteristics. In this example, the transcriptional profile is in between the MEF2D and TCF3-PBX1 

subtypes. The secondary analysis of driver genes (middle panel) suggests the combined lesion of 

MEF2D and BCL9 may be an important factor for this individual. 



Supplement Figure S12 

Unclassified case study from the Australian dataset. An unusual gene expression profile can represent 

a previously unknown subtype, however, it is more likely that the patient either had low leukemia 

burden or that incidental factors such as instrument failures or sample handling accidents had affected 

the sample quality. In Allspice, atypical samples are characterised by the lack of signals across the 

subtypes and genetic drivers. Here, there is also indication that leukemia burden may be low (see the 

tissue panel on the right). 



Supplement Figure S13 

 

Detailed breakdown of the Allspice classifier performance with respect to subtypes and sample 

quality. A) Samples classified as one of the distinct subtypes exhibited high accuracy and a low 

proportion of undefined genetic subtypes. The central subgroup was less clear with lower accuracy 

overall. B) Samples that passed quality control (proximity ≥ 50%) were accurately classified. 

Ambiguous and unclassified samples included a high proportion of undefined subtypes. C-E) 

Samples classified by Allspice into specific subtypes, stratified into quality groups. 



Supplement Figure S14 

 

Application of a secondary tissue classifier contained within the Allspice package. The numbers of 

B-cell ALL samples are shown (total 2,046). The color intensity indicates deviation from the expected 

category distribution given the category sizes. Substantial classification of the ALL patient samples 

as whole blood or ambiguous source were observed for the BCL2/MYC subtype (35 out of 63). 
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A case study of a young boy who was tested at our study center in South Australia. The sample arrived 

after Allspice was finished and it was not used anywhere else in this manuscript. No ETV6-RUNX1 

fusion was identified by molecular genetics (Karyotype, FISH, SNParray) or within the RNA-seq 

data. RNA-seq identified the following fusions (appear to be consistent with complex 3-way 

translocation idicated by FISH): ETV6 (chr 12, exon 7) - HDAC9 (chr 7, exon 13), HDAC9-ETV6 

(3’ UTR exon 13 - intron 1), UBE4B (chr 1, exon 2) - ETV6 (chr 12, exon 8), ETV6 (chr 12, exon 8) 

- IKZF1 (chr 7, exon 3). However, the transcriptional profile was consistent with ETV6-RUNX1 and 

the patient was subsequently classified as ETV6-RUNX1-like. 
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A case study of a girl who was tested at our study center in South Australia. The sample arrived after 

Allspice was finished and it was not used anywhere else in this manuscript. No known ZNF384 

fusions identified by molecular genetics or RNA-seq. FISH performed with ZNF384 Break Apart 

Probe, no rearrangement found. Detailed search of sequence data identified an AHSA2-ZNF382 

fusion called by 9 reads by fusion catcher only. In UCSC Genomic coordinates maps to intron 78 of 

USP34 and the intragenic region between ZNF383 and ZNF461. The patient was classified as 

ZNF384-like based on the transcriptional phenotype. 
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A summary of the impact of batch correction on gene expression levels. The histogram shows Pearson 

correlations for each gene between original log transformed read counts and read counts after batch 

correction. We then defined acceptable stability as R > 0.9, which led to the inclusion of 6,673 genes 

out of 18,503 for further statistical analyses. 

 


