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Characterization 

FTIR spectra were collected using a Bruker Tensor 27 FTIR spectrophotometer at a resolution of 4 

cm–1 and the KBr disk method. 13C nuclear magnetic resonance (NMR) spectra were recorded using 

an INOVA 500 instrument, with DMSO as the solvent and tetramethylsilane (TMS) as the external 

standard; chemical shifts are reported in parts per million (ppm). The thermal stabilities of the samples 

under N2 were measured using a TG Q-50 thermogravimetric analyzer; the cured sample (ca. 5 mg) 

was placed in a Pt cell and then heated at 20 °C min–1 from 100 to 800 °C under a N2 flow of 60 mL 

min–1. Wide-angle X-ray diffraction (WAXD) patterns were measured at the wiggler beamline 

BL17A1 of the National Synchrotron Radiation Research Center (NSRRC), Taiwan; a triangular bent 

Si (111) single crystal was used to obtain a monochromated beam having a wavelength (λ) of 1.33 Å. 

The morphologies of the polymer samples were examined through field emission scanning electron 

microscopy (FE-SEM; JEOL JSM7610F) and transmission electron microscopy (TEM), using a 

JEOL-2100 microscope operated at an accelerating voltage of 200 kV. BET surface areas and 

porosimetry measurements of the samples (ca. 40–100 mg) were performed using a BEL MasterTM 

instrument and BEL simTM software (v. 3.0.0); N2 adsorption and desorption isotherms were 

generated through incremental exposure to ultrahigh-purity N2 (up to ca. 1 atm) in a liquid N2 (77 K) 

bath; surface parameters were calculated using the BET adsorption models in the instrument’s 

software. The pore sizes of the prepared samples were determined using nonlocal density functional 

theory (NLDFT). 

 

Electrochemical Analysis 

Working Electrode Cleaning: Prior to use, the glassy carbon electrode (GCE) was polished several 

times with 0.05-µm alumina powder, washed with EtOH after each polishing step, cleaned through 

sonication (5 min) in a water bath, washed with EtOH, and then dried in air. 
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Electrochemical Characterization: The electrochemical experiments were performed in a three-

electrode cell using an Autolab potentiostat (PGSTAT204) and 1 M KOH as the aqueous electrolyte. 

The GCE was used as the working electrode (diameter: 5.61 mm; 0.2475 cm2); a Pt wire was used as 

the counter electrode; Hg/HgO (RE-1B, BAS) was the reference electrode. All reported potentials 

refer to the Hg/HgO potential. A slurry was prepared by dispersing the sample (45 wt. %), carbon 

black (45 wt. %), and Nafion (10 wt. %) in a mixture of (EtOH/ H2O) (200 µL: 800 µL) and then 

sonicating for 1 h. A portion of this slurry (10 µL) was pipetted onto the tip of the electrode, which 

was then dried in air for 30 min prior to use. The electrochemical performance was studied through 

CV at various sweep rates (5–200 mV s–1) and through the GCD method in the potential range from 

0 to –1.00 V (vs. Hg/HgO) at various current densities (0.5–20 A g–1) in N2 saturated 1 M KOH as 

the aqueous electrolyte solution. 

The specific capacitance was calculated from the GCD data using the equation: 

Cs = (I∆t)/(m∆V) (S1) 

Where Cs (F g–1) is the specific capacitance of the supercapacitor, I (A) is the discharge current, ΔV 

(V) is the potential window, Δt (s) is the discharge time, and m (g) is the mass of the NPC on the 

electrode. The energy density (E, W h kg–1) and power density (P, W kg–1) were calculated using the 

equations. 

 

E = 1000C(ΔV)2/(2 × 3600) (S2) 

P = E/(t/3600) (S3) 
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Figure S1: FTIR profile of AP-BZ.  
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Figure S2: (a) DSC analysis of PA-BZ at different heating rates, (b and c) activation energy of PA- 

BZ by using Kissinger and Ozawa methods. 
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Scheme S1: Preparation of poly(AP-BZ) from AP-BZ after thermal curing polymerization.  
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Scheme S2: Preparation of poly(PA-BZ POP) from PA-BZ POP after thermal curing polymerization.  
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Figure S3: In situ FTIR polymerization of PA-BZ POP. 
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Figure S4: SEM (a, b) and TEM (c, d) images of PA-BZ POP.  
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Figure S5. SEM-EDS mapping images of C, N, O and Co for the PCMC sample (a-f). 
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Figure S6: Ragone plot of P-AP-BZ POP, PA-BZ POP/Metal Composite, MPC, and PCMC. 
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Table S1: Comparison between the specific surface area/specific capacitance of our materials with 
those of previously reported materials for supercapacitor application. 
 

Electrode 
SBET 

(m2 g–1) 
Capacitance Ref. 

PA-BZ POP 25 331 F g–1 at 0.5 A g–1 This work 

PA-BZ POP/Metal Composite - 274 F g–1 at 0.5 A g–1 This work 

MPC 405 349 F g–1 at 0.5 A g–1 This work 

PCMC 1113 735 F g–1 at 0.5 A g–1 This work 

Py-FFC-CMP 50 5.07 F g–1 at 0.5 A g–1 S1 

Py-FFC-CMP/CD-BZ - 10.15 F g–1 at 0.5 A g–1 S1 

Py-FFC-CMP/poly(CD-BZ) - 46 F g–1 at 0.5 A g–1 S1 

TPE-FFC-CMP 8 4.8 F g–1 at 0.5 A g–1 S1 

TPE-FFC-CMP/CD-BZ - 7.53 F g–1 at 0.5 A g–1 S1 

TPE-FFC-CMP/poly(CD-BZ) - 37.07 F g–1 at 0.5 A g–1 S1 

TBN-Py-CMP 473 31 F g–1 at 0.5 A g–1 S2 

TBN-TPE-CMP 1150 18.45 F g–1 at 0.5 A g–1 S2 

TBN-Car-CMP 762 18.90 F g–1 at 0.5 A g–1 S2 

TBN-Py-CMP/SWCNT - 430 F g–1 at 0.5 A g–1 S2 

TBN-TPE-CMP/SWCNT - 156 F g–1 at 0.5 A g–1 S2 

TBN-Car-CMP/SWCNT - 53 F g–1 at 0.5 A g–1 S2 

POSS-A-POIP 426 152.5 F g–1 at 0.5 A g–1 S3 

POSS-F-POIP 452 36.5 F g–1 at 0.5 A g–1 S3 

Car-CTF-5-400 910.7 420 F g–1 at 50 mV s–1 S4 

Car-CTF-10-400 1248.6 388 F g–1 at 50 mV s–1 S4 

Car-CTF-5-500 1410.7 545 F g–1 at 50 mV s–1 S4 

Car-CTF-10-500 1334.4 470 F g–1 at 50 mV s–1 S4 

CoPc-CMP - 17.7 F g–1 at 0.5 A g–1 S5 

CoPc-CMP - 13.8 F g–1 at 1.0 A g–1 S5 

CoPc-CMP - 11.2 F g–1 at 2.0 A g–1 S5 

Co-GPC 272.5 455  F g–1 at 0.5 A g–1 S6 

N-doped Cobalt@graphitized carbon 

material (ZC-600) 
662.1 652  F g–1 at 1 A g–1 S7 

Carbon-ZSR 683 305  F g–1 at 1 A g–1 S8 
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