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Table S1. Binding energy, hydrogen bonding interacting residues, H-binding distance, 

hydrophobic interacting residues of 16a, 16g and 9FK. 

Compound binding energy 

hydrogen 

bonding 

interacting 

residues 

H-binding 

distance (Å) 

hydrophobic 

interacting 

residues 

16a -8.37 

Gln92 

Arg129 

Asp131 

Thr200 

1.9108 

1.9173 

1.9870 

1.9720 

His96 

Val130 

Leu134 

Leu199 

16g -6.49 
Val20 

Thr200 

2.1741 

1.6311 

His94 

Val121 

Val130 

Leu199 

9FK -7.83 

Gln92 

His119 

His119 

Thr200 

2.8656 

2.8418 

2.7080 

2.0466 

His94 

His96 

Val130 

Leu134 

Leu199 

Trp210 

 

 

 

Figure S1. The modes of binding for co-crystal structure 5FL4 in CA IX. 

Receptor grids were generated before docking with activity site determined by literature. The 

prepared protein-ligand complex was imported into Glide 9.7, which defined it as the receptor 

structure with size box (20 Å × 20 Å × 20 Å), the coordinates of the grid were X: 15.65 Å, 

Y:-27.63 Å, Z:59.53 Å in 5fl4. The grid of the CA IX crystal structure was generated based on the 

OPLS_2005 force field. The standard precision (SP) mode was set for docking studies. 
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Table S2. Compounds 16a, 16b, 16e and AZM on the cell viability of HT-29 at the concentration 

of 400 μM. 

Compounds Normoxic condition (%) Hypoxic condition (%) 

16a 83.2967±2.0924 82.6309±1.9157 

16b 89.6703±0.5539 81.0983±2.4266 

16e 91.4547±2.6427 87.7241±1.7931 

AZM 91.6947±2.5866 89.5262±0.1613 

 

Table S3. Compounds 16a, 16b, 16e and AZM on the cell viability of MDA-MB-231 at the 

concentration of 400 μM.. 

Compounds Normoxic condition (%) Hypoxic condition (%) 

16a 88.8532±1.7149 85.1319±1.6787 

16b 90.4609±0.9646 86.4508±1.9185 

16e 87.2156±2.2752 90.6250±2.7644 

AZM 96.1539±2.2837 85.1897±1.9584 

 

Table S4. Compounds 16b and AZM on the cell viability of MG-63 at the concentration of 800 

μM.. 

Compounds Normoxic condition (%) Hypoxic condition (%) 

16b 81.6287±3.3416 76.6021±3.5111 

AZM 87.0634±1.9405 81.6880±1.1688 

 

 

Table S5. Extracellular pH measurement of MDA-MB-231 under normoxic and hypoxic 

conditions. 

Compounds Normoxic condition Hypoxic condition 

16a (0.1 mM) 7.04 6.9 

16a (1.0 mM) 7.21 7.31 

16b (0.1 mM) 7.02 6.88 

16b (1.0 mM) 7.20 7.20 

AZM (0.1 mM) 7.05 6.97 

AZM (1.0 mM) 7.23 7.42 

Control 7.06 6.84 

 

 

Table S6. Extracellular pH measurement of HT-29 under normoxic and hypoxic conditions. 

Compounds Normoxic condition Hypoxic condition 

16a (0.1 mM) 6.97 6.88 

16a (1.0 mM) 7.13 7.26 

16b (0.1 mM) 6.96 6.82 

16b (1.0 mM) 7.15 7.27 

AZM (0.1 mM) 6.97 6.90 

AZM (1.0 mM) 7.26 7.28 

Control 7.02 6.81 
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In silico pharmacokinetic study of the synthesized compounds 

This section comprises clean molecular and physicochemical characteristics like molecular 

formula, molecular weight, number of heavy atoms, number of aromatic heavy atoms, fraction 

csp3, number of rotatable bonds, number of H-bond acceptors, number of H-bond donors, molar 

refractivity as shown in Table S6 respectively. 

Table S7. Physicochemical properties prediction of the compounds by SwissADME 

Molecule Formula MW Fraction Csp3 #HBA #HBD MR 

16a C24H28N6O9S 576.58 0.33 12 7 137.18 

16b C24H28N6O9S 576.58 0.33 12 7 137.18 

16c C24H27FN6O9S 594.57 0.33 13 7 137.14 

16d C24H27ClN6O9S 611.02 0.33 12 7 142.19 

16e C25H30N6O9S 590.61 0.36 12 7 142.14 

16f C25H30N6O10S 606.60 0.36 13 7 143.67 

16g C24H26F2N6O9S 612.56 0.33 14 7 137.09 

16h C25H30N6O9S 590.61 0.36 12 7 141.98 

16i C25H30N6O9S 590.61 0.36 12 7 141.98 

16j C25H29FN6O9S 608.60 0.36 13 7 141.94 

16k C25H29ClN6O9S 625.05 0.36 12 7 146.99 

16l C26H32N6O9S 604.63 0.38 12 7 146.95 

16m C26H32N6O10S 620.63 0.38 13 7 148.48 

16n C25H28F2N6O9S 626.59 0.36 14 7 141.90 

16o C25H29N7O11S 635.60 0.36 14 7 150.81 

 

Lipophilicity is a paramount parameter in drug discovery and design on grounds that it 

complements the single most informational and successful physicochemical property in medicinal 

chemistry. It is experimentally demonstrated as partition coefficients (log P) or as distribution 

coefficients (log D). Log P portrays partition equilibrium of an un-ionized solute amidst water and 

an immiscible organic solvent. The larger the log P values correspond the greater the lipophilicity. 

To evaluate the lipophilicity character in a compound, Swiss ADME provides five freely available 

models i.e., XLOGP3, WLOGP, MLOGP, SILICOS-IT, and iLOGP respectively. XLOGP3, an 

atomistic accost including corrective factors and knowledge-based library; WLOGP, application of 

purely atomistic method stationed on the fragmental system; MLOGP, an archetype of the 

topological method suggested on a linear relationship with implemented 7 topological descriptors; 

iLOGP, a physics-based method lean on free energies of solvation in n-octanol and water 
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calculated by the generalized-born and solvent accessible surface area (GB/SA) model; Consensus 

log P o/w is an arithmetic mean of the values predicted by the five proposed methods as shown in 

Table S7. The consensus Log P of all synthetic compounds was less than 0, showing poor 

lipophilicity. 

Table S8. Lipophilicity prediction of the compounds by SwissADME 

Molecule iLOGP XLOGP3 WLOGP MLOGP 
Silicos-IT 

Log P 

Consensus 

Log P 

16a 1.70 -2.20 0.89 -1.95 -2.51 -1.17 

16b 1.33 -2.20 0.89 -1.95 -2.51 -1.25 

16c -0.52 -2.10 -0.33 -1.58 -2.08 -1.32 

16d 1.27 -1.57 -0.24 -1.47 -1.86 -0.77 

16e 1.98 -1.83 -0.59 -1.74 -1.98 -0.83 

16f 0.90 -2.23 -0.88 -2.21 -2.42 -1.37 

16g 1.74 -2.00 0.23 -1.20 -1.64 -0.58 

16h 2.46 -1.84 -0.50 -1.74 -2.11 -0.75 

16i 1.46 -1.84 -0.50 -1.74 -2.11 -0.95 

16j 2.54 -1.74 0.06 -1.37 -1.67 -0.44 

16k 1.79 -1.21 0.15 -1.27 -1.45 -0.40 

16l 1.96 -1.48 -0.20 -1.54 -1.57 -0.56 

16m 1.82 -1.87 -0.49 -2.00 -2.02 -0.91 

16n 0.32 -1.64 0.62 -1.00 -1.23 -0.59 

16o 1.30 -1.46 -0.60 -2.44 -4.22 -1.48 

The breadth of solubility is measured as the saturation concentration whereupon adding more 

solute does not increase its concentration in the solution. A drug is considered highly soluble when 

the highest dose strength is soluble in 250 mL or less of aqueous media over the pH range of 1 to 

7.5. Two topological approaches included in Swiss ADME to predict water solubility, the first one 

is the application of ESOL model (Solubility class: Log S Scale: Insoluble<-10 poorly<-6, 

moderately<-4 soluble<-2 very<0<highly) and the second one is adapted from Ali et al, 2012 

(Solubility class: Log S Scale: Insoluble<-10 poorly<-6, moderately<-4 soluble<-2very<0<highly). 

Both differ from the fundamental general solubility equation since they avoid the melting point 

parameter but the linear correlation between predicted and experimental values were strong as 

shown in Table S8. The third predictor of Swiss ADME was developed by SILICOS-IT 

(Solubility class: Log S Scale: Insoluble<-10 poorly<-6, moderately<-4 soluble<-2 

very<0<highly). Compared with lipophilicity, this series of saccharide-modified compounds 

showed excellent water solubility. 
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Table S9. Solubility prediction of the compounds by SwissADME 

Molecule 
ESOL 

Log S 
ESOL Class 

Ali Log 

S 
Ali Class 

16a -1.62 Very soluble -2.47 Soluble 

16b -1.62 Very soluble -2.47 Soluble 

16c -1.78 Very soluble -2.57 Soluble 

16d -2.22 Soluble -3.12 Soluble 

16e -1.93 Very soluble -2.85 Soluble 

16f -1.70 Very soluble -2.63 Soluble 

16g -1.95 Very soluble -2.68 Soluble 

16h -1.86 Very soluble -2.84 Soluble 

16i -1.86 Very soluble -2.84 Soluble 

16j -2.02 Soluble -2.95 Soluble 

16k -2.46 Soluble -3.50 Soluble 

16l -2.16 Soluble -3.22 Soluble 

16m -1.94 Very soluble -3.00 Soluble 

16n -2.19 Soluble -3.05 Soluble 

16o -2.29 Soluble -4.20 Moderately soluble 

     

The delineation exists in a region of agreeable properties for GI absorption on a plot of two 

computed descriptors; ALOGP versus PSA respectively. The region most populated by 

well-absorbed molecules is elliptical, it was called Egan egg, which is used to assess the predictive 

power of the model for GI passive absorption and prediction for brain access by passive diffusion 

to finally lay the BOILED-Egg (Brain or Intestinal L Estimate D permeation predictive model). 

The BOILED-Egg model produces a rapid, spontaneous, efficiently imitate yet boisterous method 

to forecast the passive GI absorption helpful for drug discovery and development. The GI 

absorption and BBB permeant of this series of compounds are shown in Table S9. Cytochrome 

p450 (CYP) isoenzymes biotransform more than 50-90% of therapeutic molecules from its five 

major isoforms (CYP1A2, CYP3A4, CYP2C9, CYP2C19, CYP2D6). P-gp is broadly dispersed in 

intestinal epithelium which pumps xenobiotics back into the intestinal lumen and from the 

capillary endothelial cells of the brain back into the capillaries. SwissADME adopts a support 

vector machine algorithm (SVM) for the datasets of known substrates/non- substrates or 

inhibitors/non-inhibitors for binary classification. The resultant molecule will return “Yes” or “No” 

if the molecule under investigation is expected to be a substrate for both P-gp and CYP as shown 

in Table S10 respectively. The prediction shows that this series of compounds have little risk of 
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CYP enzyme inhibition. 

Table S10. Pharmacokinetics prediction of the compounds by SwissADME 

Molecule 
Silicos-IT 

LogSw 

Silicos-IT 

class 

GI 

absorption 

BBB 

permeant 

Pgp 

substrate 

log Kp 

(cm/s) 

16a -3.26 Soluble Low No No -11.38 

16b -3.26 Soluble Low No No -11.38 

16c -3.51 Soluble Low No No -11.42 

16d -3.83 Soluble Low No No -11.14 

16e -3.63 Soluble Low No No -11.20 

16f -3.35 Soluble Low No No -11.58 

16g -3.77 Soluble Low No No -11.46 

16h -3.65 Soluble Low No No -11.21 

16i -3.65 Soluble Low No No -11.21 

16j -3.90 Soluble Low No Yse -11.25 

16k -4.21 

Moderately 

soluble 

Low No No -10.97 

16l -4.01 

Moderately 

soluble 

Low No No -11.04 

16m -3.73 Soluble Low No No -11.41 

16n -4.16 

Moderately 

soluble 

Low No No -11.29 

16o -2.96 Sluble Low No Yes -11.21 

 

Table S11. CYP inhibition prediction of the compounds by SwissADME 

Molecule 
CYP1A2 

inhibitor 

CYP2C19 

inhibitor 

CYP2C9 

inhibitor 

CYP2D6 

inhibitor 

CYP3A4 

inhibitor 

16a No No No No No 

16b No No No No No 

16c No No No No No 
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16d No No No No No 

16e No No No No No 

16f No No No No No 

16g No No No No No 

16h No No No No No 

16i No No No No No 

16j No No No No No 

16k No No No No No 

16l No No No No No 

16m No No No No No 

16n No No No No No 

16o No No No No No 

SwissADME performs filtering of chemical libraries to exclude molecules with peculiarities 

incompatible with an acceptable pharmacokinetic profile with five disparate ruled-based filters 

elemental from considerable Pharma companies intended to improve the condition of proprietary 

chemical collections. The Lipinski filter (Pfizer) is the pioneer rule of five that characterizes small 

molecules based on physicochemical property profiles which include Molecular Weight (MW) 

less than 500, MLOGP ≤ 4.15, N or O ≤ 10, NH or OH ≤ 5. Lipinski considers stringently that all 

nitrogen and oxygen as H-bond acceptors and all nitrogen and oxygens with at least one hydrogen 

as H-bond donors. Besides, aliphatic fluorine’s are acceptors and alanine nitrogen are neither 

donors nor acceptors (Lipinski et al., 2001). The Ghose filter (Amgen) describes small molecules 

stationed on the physicochemical property, existence of functional groups, and substructures. The 

qualifying range including molecular weight is between 160 and 480 Da, WlogP is between -0.4 to 

5.6, molar refractivity (MR) is between (40 to 130) for the total number of atoms. The qualifying 

range is between 20 and 70 atoms in a small molecule. Veber filter (GSK filter) model symbolizes 

molecules as drug-like if they have ≤ 10 rotatable bonds and a TPSA equal to or less than 140 Å2 

with 12 or fewer H-bond donors and acceptors. Compounds with these properties will have good 

oral bioavailability, reduced TPSA correlates increased permeation rate, increased rotatable bond 

counts has a negative effect on the permeation rate. Egan filter (Pharmacia filter) anticipates drug 

absorption depends on processes involved in the membrane permeability of a small molecule. This 

model symbolizes molecule as a drug like if they have WLOGP ≤ 5.88 and TPSA ≤ 131.6 

respectively. The Egan computational model for human passive intestinal absorption (HIA) of 

small molecule accounts for active transport and efflux mechanisms and is therefore robust in 

predicting absorption of drugs. Muegge filter (Bayer filter) is a self-reliant Pharmacophore point 

filter that segregates drug-like and nondrug-like molecules. This model symbolizes molecule as a 

drug like if they have a molecular weight between 200 to 600 Da, XLOGP between -2 and 5, 

TPSA ≤ 150, Number of rings ≤ 7, Number of carbon atoms > 4, number of heteroatoms > 1, 

number of rotatable bonds ≤ 15, H-bond acceptor ≤ 10, H-bond donor ≤ 5 respectively. Abbott 
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bioavailability score seeks to predicts the probability of a compound to have at least 10% oral 

bioavailability in rat or measurable Caco-2 permeability which predicts the probability of a 

compound to have F>10% based on the predominant charge at biological pH in a rat model. It 

focuses on the fast screening of chemical libraries to select the best molecules to be synthesized as 

shown in Table S11.  

Table S12. Drug likeness prediction of the compounds by SwissADME 

Molecule 
Lipinski 

#violations 

Ghose 

#violations 

Veber 

#violations 

Egan 

#violations 

Muegge 

#violations 

Bioavailability 

Score 

16a 3 3 2 1 4 0.17 

16b 3 3 2 1 4 0.17 

16c 3 2 2 1 4 0.17 

16d 3 2 2 1 4 0.17 

16e 3 4 2 1 3 0.17 

16f 3 4 2 1 5 0.17 

16g 3 2 2 1 4 0.17 

16h 3 4 2 1 3 0.17 

16i 3 4 2 1 3 0.17 

16j 3 3 2 1 4 0.17 

16k 3 3 2 1 4 0.17 

16l 3 3 2 1 4 0.17 

16m 3 4 2 1 4 0.17 

16n 3 3 2 1 4 0.17 

16o 3 4 2 1 4 0.17 

These section aims to bolster medicinal chemists in their daily drug discovery endeavors. 

PAINS (Pan Assay Interference Compounds or frequent hitters or promiscuous compounds) are 

the molecules that show potent response in assays irrespective of the protein targets, notably such 

compounds are reported to be active in many different assays, which can be considered as 

potential starting points for further exploration. SwissADME returns warnings if such moieties are 

found in the molecule under evaluation. In other models, Brenk considers compounds that are 

smaller and less hydrophobic and not those defined by “Lipinski’s rule of 5” to widen 

opportunities for lead optimization. This was after the exclusion of compounds with potentially 

mutagenic, reactive, and unfavorable groups such as nitro groups, sulfates, phosphates, 

2-halopyridines, and thiols. Brenk model restricts the ClogP/ClogD to between 0 and 4, the 

number of hydrogen-bond donors and acceptors to fewer than 4 and 7, respectively, and the 

number of heavy atoms to between 10 and 27 respectively. Additionally, only compounds with 
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limited complexity defined as fewer than 8 rotatable bonds, fewer than 5 ring systems, and no ring 

systems with more than 2 fused rings are considered medicinal. The concept of lead likeness is 

designed to provide leads with tremendous affinity in high throughput screening (HTS) that allows 

for the exploitation of additional interactions in the lead optimization phase. Leads are exposed to 

chemical modifications that will most likely decrease the size and increase lipophilicity which is 

less hydrophobic than drug-like molecules. Lead optimization has been done by a rule-based 

method consisting of molecules with molecular weight in between 100 and 350 Da, ClogP 

between 1 and 3.0, and are greatly considered as superior to those of drug-like compounds and 

therefore lead-like as shown in Table S12. The MW of this series of compounds is greater than 

350 and the number of rotatable bonds is more than 7, which is contrary to leadlikeness.  

 

 

 

Table S13. Medicinal chemistry prediction of the compounds by SwissADME 

Molecule 
PAINS 

#alerts 

Brenk 

#alerts 

Leadlikeness 

#violations 
Synthetic Accessibility 

16a 0 0 2 5.30 

16b 0 0 2 5.32 

16c 0 0 2 5.33 

16d 0 0 2 5.34 

16e 0 0 2 5.48 

16f 0 0 2 5.49 

16g 0 0 2 5.34 

16h 0 0 2 5.41 

16i 0 0 2 5.43 

16j 0 0 2 5.44 

16k 0 0 2 5.45 

16l 0 0 2 5.58 

16m 0 0 2 5.60 

16n 0 0 2 5.45 

16o 0 2 2 5.63 

 

 

 

 



11 

 

 

Figure S2. The 1H-NMR of intermediate 4 

 

Figure S3. The 13C-NMR of intermediate 4 
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Figure S4. The 1H-NMR of intermediate 5 

 

Figure S5. The 13C-NMR of intermediate 5 
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Figure S6. The 1H-NMR of intermediate 6 

 

Figure S7. The 13C-NMR of intermediate 6 
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Figure S8. The 1H-NMR of intermediate 10a 

 

Figure S9. The 13C-NMR of intermediate 10a 
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Figure S10. The 1H-NMR of intermediate 10b 

 

Figure S11. The 13C-NMR of intermediate 10b 
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Figure S12. The 1H-NMR of intermediate 10c 

 

Figure S13. The 13C-NMR of intermediate 10c 
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Figure S14. The 1H-NMR of intermediate 10d 

 

Figure S15. The 13C-NMR of intermediate 10d 
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Figure S16. The 1H-NMR of intermediate 10e 

 

Figure S17. The 13C-NMR of intermediate 10e 
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Figure S18. The 1H-NMR of intermediate 10f 

 

Figure S19. The 13C-NMR of intermediate 10f 
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Figure S20. The 1H-NMR of intermediate 10g 

 

Figure S21. The 13C-NMR of intermediate 10g 
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Figure S22. The 1H-NMR of intermediate 11a 

 

Figure S23. The 13C-NMR of intermediate 11a 
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Figure S24. The 1H-NMR of intermediate 11b 

 

Figure S25. The 13C-NMR of intermediate 11b 
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Figure S26. The 1H-NMR of intermediate 11c 

 

Figure S27. The 13C-NMR of intermediate 11c 
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Figure S28. The 1H-NMR of intermediate 11d 

 

Figure S29. The 13C-NMR of intermediate 11d 
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Figure S30. The 1H-NMR of intermediate 11e 

 

Figure S31. The 13C-NMR of intermediate 11e 
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Figure S32. The 1H-NMR of intermediate 11f 

 

Figure S33. The 13C-NMR of intermediate 11f 
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Figure S34. The 1H-NMR of intermediate 11g 

 

Figure S35. The 13C-NMR of intermediate 11g 
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Figure S36. The 1H-NMR of intermediate 11h 

 

Figure S37. The 13C-NMR of intermediate 11h 



29 

 

 

Figure S38. The 1H-NMR of intermediate 14a 

 

Figure S39. The 13C-NMR of intermediate 14a 
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Figure S40. The 1H-NMR of intermediate 14b 

 

Figure S41. The 13C-NMR of intermediate 14b 
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Figure S42. The 1H-NMR of intermediate 14c 

 

Figure S43. The 13C-NMR of intermediate 14c 
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Figure S44. The 1H-NMR of intermediate 14d 

 

Figure S45. The 13C-NMR of intermediate 14d 



33 

 

 

Figure S46. The 1H-NMR of intermediate 14e 

 

Figure S47. The 13C-NMR of intermediate 14e 
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Figure S48. The 1H-NMR of intermediate 14f 

 

Figure S49. The 13C-NMR of intermediate 14f 
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Figure S50. The 1H-NMR of intermediate 14g 

 

Figure S51. The 13C-NMR of intermediate 14g 
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Figure S52. The 1H-NMR of intermediate 14h 

 

Figure S53. The 13C-NMR of intermediate 14h 
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Figure S54. The 1H-NMR of compound 16a 

 

Figure S55. The 13C-NMR of compound 16a 
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Figure S56. The 1H-NMR of compound 16b 

 

Figure S57. The 13C-NMR of compound 16b 
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Figure S58. The 1H-NMR of compound 16c 

 

Figure S59. The 13C-NMR of compound 16c 
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Figure S60. The 1H-NMR of compound 16d 

 

Figure S61. The 13C-NMR of compound 16d 
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Figure S62. The 1H-NMR of compound 16e 

 

Figure S63. The 13C-NMR of compound 16e 
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Figure S64. The 1H-NMR of compound 16f 

 

Figure S65. The 13C-NMR of compound 16f 
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Figure S66. The 1H-NMR of compound 16g 

 

Figure S67. The 13C-NMR of compound 16g 
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Figure S68. The 1H-NMR of compound 16h 

 

Figure S69. The 13C-NMR of compound 16h 
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Figure S70. The 1H-NMR of compound 16i 

 

Figure S71. The 13C-NMR of compound 16i 
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Figure S72. The 1H-NMR of compound 16j 

 

Figure S73. The 13C-NMR of compound 16j 
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Figure S74. The 1H-NMR of compound 16k 

 

Figure S75. The 13C-NMR of compound 16k 
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Figure S76. The 1H-NMR of compound 16l 

 

Figure S77. The 13C-NMR of compound 16l 
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Figure S78. The 1H-NMR of compound 16m 

 

Figure S79. The 13C-NMR of compound 16m 
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Figure S80. The 1H-NMR of compound 16n 

 

Figure S81. The 13C-NMR of compound 16n 
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Figure S82. The 1H-NMR of compound 16o 

 

Figure S83. The 13C-NMR of compound 16o 

 

 

 

 


