PICKLE recruits RETINOBLASTOMA RELATED 1 to Control Lateral Root

 Formation in ArabidopsisKrisztina Ötvös ${ }^{1,4^{*}}$, Pál Miskolczi ${ }^{2}$, Peter Marhavý ${ }^{4}$, Alfredo Cruz-Ramírez ${ }^{5}$, Eva Benková ${ }^{4}$, Stéphanie Robert ${ }^{2}$ and László Bakó ${ }^{1 *}$

1. Supplementary figures

Supplementary Figure S1. (A) Protein domain structure of the PKL protein showing the position of the LxCxE consensus pRb binding motives. (B) Protoplasts were transfected with 35S::HA-RBR1 (HA-RBR1) and 35S::myc-PKL-N (Myc-PKL-N) and 35S::myc-PKL-C (Myc-PKL-C) constructs and protein extracts from transformed protoplasts were immunoprecipitated with anti-myc antibodies. Immunocomplexes and unbound fractions were analyzed on protein gel blots using anti-HA or anti-myc antibodies, respectively. (C) Confocal microscopic images of the subcellular localization of the RBR1/PKL complex by BiFC assays. Coexpression of $35 S:: Y F P N-R B R 1$ (RBR1) and $35 S:: Y F P C-P K L-N$ (PKL-N) or $35 S:: Y F P C-P K L-C$ (PKL-C) in suspension derived Arabidopsis protoplasts. PKL-N: N-terminal part of the PKL protein (aa 1-586), PKL-C: C-terminal part of the PKL protein (aa 463-1384), Bar $=5 \mu \mathrm{~m}$. (D) BiFC assay in suspension derived protoplasts coexpressing RBR1 plus N-terminal part of PKL (PKL-N) versus RBR1 plus LxCxE mutated PKL-N (PKL-Nm) and RBR1 plus C-terminal part of PKL (PKL-C) versus RBR1 plus PKL-C LxCxE mutated (PKL-Cm) constructs.

Supplementary Figure S2. (A) Confocal images of the expression pattern of the pRBR1::RBR1-RFP (red channel) construct in different zones of the root (from right to left); root tip, the differentiation zone and during lateral root primordia formation. Bar represents 100 $\mu \mathrm{m}$. White arrows point to pericycle-localized RBR1. (B) Confocal images of the expression pattern of the $p P K L:: P K L-G F P$ (green channel) construct in different zones of the root (from right to left); root tip, the differentiation zone and during lateral root primordia formation. Bar represents $100 \mu \mathrm{~m}$. White arrows point to pericycle-localized RBR1 and PKL proteins.

Supplementary Figure S3. (A) 7 DAG wild type Columbia and ssl2-1 seedlings. (B) Western blot analysis of RBR1 and PKL protein expression in wild type Columbia (Col), ssl2-1 and slr1 roots probed with anti-RBR1 and anti-PKL antibodies, respectively.

Supplementary Figure S4. ChIP-PCR analysis of LBD17, LBD18, LBD29 and LBD33 promoter fragments. ChIP with the anti-RBR1 antibody using chromatin extracted from 10 DAG Col roots. Triangles show the position of the E2F consensus (E2F) and the AuxRE motives. Black bar represents the amplified PCR fragment position on the schematic diagram of the different promoters. -: non-template control, i: input DNA, m: IP with IgG, IP: IP with anti-RBR1 antibody.

Supplementary Figure S5. LBD16 promoter activity (green channel) in wild type Columbia (Col-0), amiRBR1 and ssl2-1. 6 DAG whole root confocal scans.

Supplementary Figure S6. 7 DAG wild type Columbia (Col-0), amiRBR1, RBR1-RFP and ssl2-1 seedlings with and without Auxinol treatment.

Supplementary Figure S1.

pPKL::PKL-GFP

Supplementary Figure S2.

Supplementary Figure S3.

Supplementary Figure S4.

Supplementary Figure S5.

Supplementary Figure S6.

2. Supplementary Experimental Procedures

Supplementary Table S1.

List of oligonucleotide primers used in this study
The specificity of the PCR primers was assessed with the MFEprimer-2.0 program ${ }^{1,2}$.
$\left.\begin{array}{|l|l|}\hline \text { qPCR primers } \\ \hline \text { RBR1 } & \begin{array}{l}\text { GGATCGCCAAAGGTGTCTGTGTTTC } \\ \text { TCCTCTTGCGGTTGCTGCTGCTGTT }\end{array} \\ \hline \text { LBD16 } & \begin{array}{l}\text { GCCACAGAGCTCGCTAGAAGA } \\ \text { TCGCACGTTGGCTGTTGT }\end{array} \\ \hline \text { ACR4 }{ }^{3} & \begin{array}{l}\text { GATCATAGTGCGGTCTGTTGG } \\ \text { AGGGATAGAAGCAGGGAAACC }\end{array} \\ \hline \begin{array}{l}\text { At1g61670 } \\ \text { (Ref01) }\end{array} & \begin{array}{l}\text { CTGACCCTCTAATCGAACTC } \\ \text { CCCTGTTTCCGCTAAGTATG }\end{array} \\ \hline \begin{array}{l}\text { At3g03210 } \\ \text { (Ref04) }\end{array} & \begin{array}{l}\text { CATGGGAACTGGGTTATGG } \\ \text { CTCCTTCTTGCTCCTTTGG }\end{array} \\ \hline \begin{array}{l}\text { At2g32760 } \\ \text { (Ref02) }\end{array} & \begin{array}{l}\text { CCGACAAGAAAGAAGTTCAG } \\ \text { GATAACGAATTGGCACTCTC }\end{array} \\ \hline \text { ChIP primers } & \begin{array}{l}\text { CCACACGTGCCTAAGCCACCTAAGCAGA } \\ \text { GCACTTTGCAAGTTTGAAACTC }\end{array} \\ \hline \text { LBD16 F1 } & \begin{array}{l}\text { GTGGCTTCTCCTCAAATGTC } \\ \text { ACGAGCGAACTAGGAAATGG }\end{array} \\ \hline \text { LBD16 F2 } & \begin{array}{l}\text { GCTCCAAGAACCAAACGTATCC } \\ \text { GCACTTTGCAAGTTTGAAACTC }\end{array} \\ \hline \text { LBD16F3 } & \begin{array}{l}\text { TCGCTCGTGCACATCTCCGA } \\ \text { TGTCCCCGCCGTTGTACCGT }\end{array} \\ \hline \text { LBD16 F4 } & \begin{array}{l}\text { GAAAGGTGTAGGCCACTAAG } \\ \text { GAATGGAGGAGCATTAGC }\end{array} \\ \hline \text { LBD17 } & \begin{array}{l}\text { GATAAGTTGGCGAACGAGTC } \\ \text { GCGTGAAGCAAACATGCGATAAGC }\end{array} \\ \hline \text { LBD18 } & \begin{array}{l}\text { TCTCTGGAAGGGTAGGTTAG } \\ \text { GGTGAAGATGAAGGTGGGTTAC }\end{array} \\ \hline \text { LBD29 } & \begin{array}{l}\text { GTGTGGATCGGAGTAATG } \\ \text { GCATCGTGGCCTACATTT }\end{array} \\ \hline \begin{array}{l}\text { LBD33 }\end{array} \\ \hline \text { genomic } \\ \text { specific }\end{array} \quad \begin{array}{l}\text { TCGCTCGTGCACATCTCCGA } \\ \text { TGTCCCCGCCGTTGTACCGT }\end{array}\right\}$

PKL-N SDM Fwd	ATCGGATTGCTGCCGCCCGGGCGGAAG
PKL-N SDM PspXRev	ATGTTCTCTGATAACTGCTCGAGCTTG
PKL-N SDM Rev	CTTCCGCCCGGGCGGCAGCAATCCGAT
PKL-C SDM SpeIFwd	GGAAGATGTGAGCTCTGATGG
PKL-C SDM Fwd	GACAAAGAGTTGGGGATCCAAGAGGCTATCGCCAAGGCCTTGA ATTTCCCTCACATAAGTTTG
PKL-C SDM BclIRev	GTAATACGACTCACTATAGGGCG
PKL-C SDM Rev	CAAACTTATGTGAGGGAAATTCAAGGCCTTGGCGATAGCCTCTT GGATCCCCAACTCTTTGTC

Generation of plasmid constructs

For co-immunoprecipitation (Co-IP) assays, the epitope tagging vectors containing 3 xMyc or 3 xHA tags, p RT104-3Myc and pRT104-3HA ${ }^{4}$ vectors and for Bimolecular Fluorescence Complementation (BiFC) assays pSAT1-cEYFP-C1-B (35S::YFPC) and pSAT1$n E Y F P-C 1(35 S:: Y F P N)^{5}$ vectors were used. All constructs contain the epitopes at the N terminus of the fusion proteins. The coding sequence of RBR1 was PCR amplified from cDNA using RBR1for/BamHI (ATAGGATCCATGGAAGAAGTTCAGCCT) and RBR1rev/XhoI (ATACTCGAGCTATGAATCTGTTGGCTC) primer pair. The BamHI and XhoI digested PCR product was inserted into the SalI and BamHI digested pRT104-3HA vector to create HARBR1. Myc-PKL-C and Myc-PKL-N contains the C-terminal part (aa 463-1384) and the Nterminal part (aa 1-586) of the PKL protein as KpnI and blunt ended HindIII inserts respectively. The $35 S:: Y F P N-R B R 1$ construct was obtained by excising the coding region of RBR1 from the HA-RBR1 construct using BamHI and ApaI and inserting it into the ApaI and BglII sites of the pSAT1-nEYFP-C1 vector. The coding region of the full length PKL (fPKL) protein was assembled by inserting the synthetized SacII/HindIII digested N -terminal part into the HindIII/SacII sites of the modified pBluecsript vector containing the C-terminal part of the protein (pmBluescript2-PKL-C) provided by Riken to create pmBluescript2-fPKL. The $35 S:: Y F P C-f P K L$ construct contains fPKL as an SacII/KpnI blunt ended insert. The $35 S:: Y F P C-P K L-N$ construct was generated by ligating the HindIII fragment of the pmBluescript2-fPKL construct into the HindIII site of the pSAT1-cEYFP-C1-B vector. The 35S::YFPC-PKL-C was obtained by ligating the blunt ended SfiI PKL-C insert from pmBluescript2-PKL-C into the blunt ended KpnI site of the pSAT1-cEYFP-C1-B vector.

Mutation of the LxCxE motives into AxAxA in the N - and C-terminal part of the PKL protein was performed by PCR-based site directed mutagenesis. For primer sequences used for the mutagenesis see Supplemental Table.

For promoter activity assays, constructs in the binary vector $p S L 36-G F P$ were used. The pLBD16: :GFP construct was generated by PCR amplification of a 1551 bp promoter fragment upstream of the translational initiation site using primers LBD16for/PmlI (CCACA CGTGCCTAAGCCACCTAAGCAGA) and LBD16rev/SpeI (TGGACTAGTGCGAAACGAACAAAAAAG). The PCR fragment was digested using PmlI and SpeI and inserted into the PmlI/SpeI digested $p S L 36-G F P$ vector. Similarly the pLBD29: $: G F P$ was obtained by PCR amplification of a 1456 bp promoter fragment upstream of the translational initiation site using primers LBD29for/PmlI (CCACACGTGGTCCATTGTCTCTATATATCG) and LBD29rev/XbaI. The PCR fragment was digested with PmII/XbaI and ligated into the PmlI/SpeI digested pSL36-GFP vector. pLBD1641: G GFP and $p L B D 1642:: G F P$ are deletion variants of the original $p L B D 16: \because G F P$ construct, missing a 738 bp PmlI - Bst1107I and a 813 bp Bst1107I - SpeI promoter fragment, respectively.

For $D R 5$ activity assays, the $D R 5$ sequence was amplified by PCR with DR5fwdPmll (TACACGTGAAATAGGCGTATCACGAGGC) and DR5revSpel (ATACTAGTGATCGATCCCCTGTAATTGT) primer pair from the pDR5rev::GFP construct ${ }^{6}$. The PCR fragment was digested with PmlI/SpeI and ligated into the PmlI/SpeI digested pSL36-GFP vector.

3. Supplementary References

1.Qu, W. et al. MFEprimer-2.0: a fast thermodynamics-based program for checking PCR primer specificity. Nucleic Acids Res. 40, W205-208 (2012).
2.Qu, W., Shen, Z., Zhao, D., Yang, Y. \& Zhang, C. MFEprimer: multiple factor evaluation of the specificity of PCR primers. Bioinforma. Oxf. Engl. 25, 276-278 (2009).
3.Smet, I. D. et al. Receptor-Like Kinase ACR4 Restricts Formative Cell Divisions in the Arabidopsis Root. Science 322, 594-597 (2008).
4.Fülöp, K. et al. The Medicago CDKC;1-CYCLINT; 1 kinase complex phosphorylates the carboxy-terminal domain of RNA polymerase II and promotes transcription. Plant J. 42, 810820 (2005).
5.Kerppola, T. K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1, 1278-1286 (2006).
6.Ulmasov, T., Murfett, J., Hagen, G. \& Guilfoyle, T. J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963-1971 (1997).

