## Supplementary Materials: Altered Profile of E1-S Transporters in Endometrial Cancer: Lower Protein Levels of ABCG2 and OSTβ and Up-Regulation of *SLCO1B3* Expression

Renata Pavlič, Suzana Vidic, Maja Anko, Tamara Knific, Tomaž Büdefeld, Kristina Marton, Maša Sinreih, Stefan Poschner, Walter Jäger, Snježana Frković-Grazio and Tea Lanišnik Rižner



**Figure S1.** Uncropped gels and blots in Western blot detection of STS and GAPDH. a) Gels after staining with Coomassie brilliant blue, b) full-length membranes after staining with Ponceau S, c) full-length membranes after chemiluminescent detection of STS, d) full-length membranes after chemiluminescent detection of GAPDH, e) densitometric readings for quantification acquired with programme Image J. Membrane 7 (m7) was chosen as representative membrane of STS levels in investigated cell lines.



**Figure S2.** Positive and negative controls for anti-ABCG2, anti-OST $\beta$ , and anti-OATP1B3 antibodies, used in immunohistochemical staining.

|                     |                   |                            |                                 |                                            |                     | U                                                        |                  |           |
|---------------------|-------------------|----------------------------|---------------------------------|--------------------------------------------|---------------------|----------------------------------------------------------|------------------|-----------|
| Primary<br>antibody | Pre-<br>treatment | Pre-<br>treatment<br>(min) | Primary<br>antibody<br>dilution | Primary<br>antibody<br>incubation<br>(min) | Antibody<br>diluent | Primary<br>antibody<br>incubation<br>temperature<br>(°C) | Detection<br>kit | Thickness |
| ABCG2               | CC1               | 48                         | 1:50                            | 60                                         | TTBS                | 37                                                       | OptiView         | 4 µm      |
| OSTβ                | CC1               | 48                         | 1:100                           | 60                                         | TTBS                | 37                                                       | OptiView         | 4 µm      |
| OATP1B3             | CC1               | 72                         | 1:50                            | 120                                        | TBS                 | 37                                                       | OptiView         | 4 µm      |
|                     |                   |                            |                                 |                                            |                     |                                                          |                  |           |

Table S1. Technical conditions for immunohistochemical staining.

IHC was performed on the Ventana BenchMark ULTRA platform. CC1 – Cell Conditioning Solution 1 (Trisbased buffer, pH 8.5), TBS – Tris-Buffered Saline, TTBS – Tween-Tris-Buffered Saline.

|          | HIEEC     |           | Ishikawa  | HEC-1-A   |            |            | Normal tissue |           | Tumor tissue | 2           |
|----------|-----------|-----------|-----------|-----------|------------|------------|---------------|-----------|--------------|-------------|
| gene     | mean      | SD        | mean      | SD        | mean       | SD         | mean          | SD        | mean         | SD          |
| ABCC1    | 212347.91 | 120167.83 | 793260.86 | 871703.41 | 287172.96  | 185450.98  | 171007.00     | 105071.00 | 268428.00    | 239633.00   |
| ABCC4    | 17563.24  | 7331.72   | 93064.76  | 106863.99 | 252419.40  | 231728.27  | 64531.10      | 74076.40  | 59001.10     | 47012.40    |
| ABCG2    | 41691.98  | 15412.68  | 26622.47  | 25065.35  | 1329.01    | 1271.83    | 905358.00     | 779787.00 | 299870.00    | 780028.00   |
| SLC10A6  | 524.56    | 137.10    | 4287.98   | 4711.50   | 3841.04    | 3018.53    | 20421.20      | 20447.50  | 32124.90     | 110341.00   |
| SLC22A11 | 106.17    | 70.20     | 135.98    | 85.85     | 976.17     | 954.03     | 11375.70      | 9168.96   | 7678.84      | 7745.00     |
| SLC51A   | 14797.83  | 8470.23   | 207015.19 | 295527.05 | 92745.15   | 99959.00   | 44121.50      | 44178.70  | 59825.20     | 55194.40    |
| SLC51B   | 1439.37   | 536.86    | 61868.48  | 96982.06  | 9572.80    | 11705.51   | 180466.00     | 134256.00 | 85590.40     | 107595.00   |
| SLCO1A2  | 338.55    | 202.35    | 11891.72  | 20194.06  | 107.75     | 135.02     | 6724.91       | 16820.90  | 24512.90     | 87127.70    |
| SLCO1B1  | 10.82     | 6.81      | 397.36    | 298.16    | 6500.27    | 7250.01    | 88513.40      | 205123.00 | 85141.20     | 179207.00   |
| SLCO1B3  | 410.02    | 394.39    | 13556.37  | 22706.14  | 8212224.39 | 7316381.75 | 353300.00     | 751143.00 | 3020220.00   | 13262300.00 |
| SLCO1C1  | 32.90     | 20.13     | 1777.63   | 3210.93   | 683.96     | 1307.26    | 3509.41       | 2818.91   | 3803.15      | 4128.28     |
| SLCO2B1  | 1407.00   | 389.01    | 1010.77   | 1238.63   | 142565.28  | 100526.24  | 392533.00     | 285953.00 | 358978.00    | 486884.00   |
| SLCO3A1  | 925.72    | 815.48    | 49.26     | 85.39     | 278.00     | 220.62     | 9883.77       | 14303.70  | 8493.11      | 16459.40    |
| SLCO4A1  | 8896.66   | 5529.25   | 11596.36  | 12879.74  | 346579.01  | 249855.69  | 281831.00     | 366875.00 | 286660.00    | 516142.00   |
| SLCO4C1  | 3466.15   | 852.02    | 408303.85 | 354990.02 | 852.59     | 971.24     | 14510.30      | 15098.10  | 26496.60     | 50860.70    |

**Table S2.** Normalized expression of evaluated genes in model cell lines and tissue samples evaluated using qPCR.

|                        | Metabolite (calculated concentration) |                    |                   |      |                     |                    |                      |                    |      |      |
|------------------------|---------------------------------------|--------------------|-------------------|------|---------------------|--------------------|----------------------|--------------------|------|------|
| Sample ID              | DHEA                                  | DHEA-S             | AD                | Т    | E1                  | E1-S               | E2                   | E2-S               | E2-G | E3   |
| Ishikawa control       | n.c.                                  | n.c.               | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa control       | n.c.                                  | n.c.               | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 10nM DHEA     | 9.197 nM                              | 30.749 fmol/Mio/h  | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 10nM DHEA     | 9.213 nM                              | 17.664 fmol/Mio/h  | n.c.              | n.c. | n.c.                | 1.264 fmol/Mio/h   | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 100nM DHEA    | 93.775 nM                             | 195.921 fmol/Mio/h | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 100nM DHEA    | 91.836 nM                             | 150.140 fmol/Mio/h | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 500nM DHEA    | 388.361 nM                            | 481.770 fmol/Mio/h | 23.700 fmol/Mio/h | n.c. | n.c.                | 2.040 fmol/Mio/h   | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 500nM DHEA    | 438.961 nM                            | 428.753 fmol/Mio/h | 27.026 fmol/Mio/h | n.c. | n.c.                | 2.591 fmol/Mio/h   | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 1000nM DHEA   | 780.560 nM                            | 945.828 fmol/Mio/h | 78.053 fmol/Mio/h | n.c. | n.c.                | 2.322 fmol/Mio/h   | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 1000nM DHEA   | 755.463 nM                            | 811.222 fmol/Mio/h | 46.373 fmol/Mio/h | n.c. | n.c.                | 1.416 fmol/Mio/h   | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 10nM E1       | n.c.                                  | 4.770 fmol/Mio/h   | n.c.              | n.c. | 3.026 nM            | 79.650 fmol/Mio/h  | 78.437 fmol/Mio/h    | 32.044 fmol/Mio/h  | n.c. | n.c. |
| Ishikawa 10nM E1       | n.c.                                  | 3.084 fmol/Mio/h   | n.c.              | n.c. | 3.043 nM            | 85.446 fmol/Mio/h  | 85.344 fmol/Mio/h    | 32.635 fmol/Mio/h  | n.c. | n.c. |
| Ishikawa 100nM E1      | n.c.                                  | 3.678 fmol/Mio/h   | n.c.              | n.c. | 51.361 nM           | 107.343 fmol/Mio/h | 1470.020 fmol/Mio/h  | 69.065 fmol/Mio/h  | n.c. | n.c. |
| Ishikawa 100nM E1      | n.c.                                  | 1.960 fmol/Mio/h   | n.c.              | n.c. | 56.220 nM           | 84.602 fmol/Mio/h  | 896.104 fmol/Mio/h   | 49.760 fmol/Mio/h  | n.c. | n.c. |
| Ishikawa 500nM E1      | n.c.                                  | 7.584 fmol/Mio/h   | n.c.              | n.c. | 386.867 nM          | 328.617 fmol/Mio/h | 3023.847 fmol/Mio/h  | 226.756 fmol/Mio/h | n.c. | n.c. |
| Ishikawa 500nM E1      | n.c.                                  | 66.104 fmol/Mio/h  | n.c.              | n.c. | 370.105 nM          | 451.509 fmol/Mio/h | 4056.246 fmol/Mio/h  | 296.022 fmol/Mio/h | n.c. | n.c. |
| Ishikawa 1000nM E1     | n.c.                                  | n.c.               | n.c.              | n.c. | 595.627 nM          | 896.478 fmol/Mio/h | 18305.047 fmol/Mio/h | 461.948 fmol/Mio/h | n.c. | n.c. |
| Ishikawa 1000nM E1     | n.c.                                  | n.c.               | n.c.              | n.c. | 615.821 nM          | 637.871 fmol/Mio/h | 12119.243 fmol/Mio/h | 294.448 fmol/Mio/h | n.c. | n.c. |
| Ishikawa control       | n.c.                                  | n.c.               | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa control       | n.c.                                  | n.c.               | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 10nM DHEA-S   | n.c.                                  | 6.580 nM           | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 10nM DHEA-S   | n.c.                                  | 6.308 nM           | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 100nM DHEA-S  | n.c.                                  | 61.750 nM          | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 100nM DHEA-S  | n.c.                                  | 61.751 nM          | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 500nM DHEA-S  | n.c.                                  | 491.766 nM         | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 500nM DHEA-S  | n.c.                                  | 461.321 nM         | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 1000nM DHEA-S | n.c.                                  | 919.895 nM         | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 1000nM DHEA-S | n.c.                                  | 933.723 nM         | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| Ishikawa 10nM E1-S     | n.c.                                  | n.c.               | n.c.              | n.c. | 11.713 fmol/Mio/h   | 7.950 nM           | n.c.                 | 0.972 fmol/Mio/h   | n.c. | n.c. |
| Ishikawa 10nM E1-S     | n.c.                                  | n.c.               | n.c.              | n.c. | 30.588 fmol/Mio/h   | 8.989 nM           | n.c.                 | 2.493 fmol/Mio/h   | n.c. | n.c. |
| Ishikawa 100nM E1-S    | n.c.                                  | 0.024 nM           | n.c.              | n.c. | 128.292 fmol/Mio/h  | 80.673 nM          | n.c.                 | 8.949 fmol/Mio/h   | n.c. | n.c. |
| Ishikawa 100nM E1-S    | n.c.                                  | 0.030 nM           | n.c.              | n.c. | 250.570 fmol/Mio/h  | 82.692 nM          | n.c.                 | 12.171 fmol/Mio/h  | n.c. | n.c. |
| Ishikawa 500nM E1-S    | n.c.                                  | n.c.               | n.c.              | n.c. | 1016.009 fmol/Mio/h | 456.395 nM         | 134.201 fmol/Mio/h   | 21.079 fmol/Mio/h  | n.c. | n.c. |
| Ishikawa 500nM E1-S    | n.c.                                  | n.c.               | n.c.              | n.c. | 2013.594 fmol/Mio/h | 405.687 nM         | 342.191 fmol/Mio/h   | 20.579 fmol/Mio/h  | n.c. | n.c. |
| Ishikawa 1000nM E1-S   | n.c.                                  | n.c.               | n.c.              | n.c. | 2055.953 fmol/Mio/h | 894.851 nM         | 318.671 fmol/Mio/h   | 31.475 fmol/Mio/h  | n.c. | n.c. |
| Ishikawa 1000nM E1-S   | n.c.                                  | n.c.               | n.c.              | n.c. | 4357.706 fmol/Mio/h | 867.621 nM         | 705.346 fmol/Mio/h   | 31.994 fmol/Mio/h  | n.c. | n.c. |
| HEC-1-A control        | n.c.                                  | n.c.               | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| HEC-1-A control        | n.c.                                  | n.c.               | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| HEC-1-A 10nM DHEA      | 6.705 nM                              | 48.277 fmol/Mio/h  | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| HEC-1-A 10nM DHEA      | 7.187 nM                              | 64.807 fmol/Mio/h  | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| HEC-1-A 100nM DHEA     | 72.971 nM                             | 308.462 fmol/Mio/h | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |
| HEC-1-A 100nM DHEA     | 80.207 nM                             | 625.002 fmol/Mio/h | n.c.              | n.c. | n.c.                | n.c.               | n.c.                 | n.c.               | n.c. | n.c. |

Table S3. Results of DHEA-S, DHEA, E1-S and E1 metabolism in model cell lines of EC evaluated using LC-HRMS.

| HEC-1-A 500nM DHEA    | 335.670 nM          | 6016.566 fmol/Mio/h | 59.537 fmol/Mio/h | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
|-----------------------|---------------------|---------------------|-------------------|------|----------------------|--------------------|---------------------|--------------------|------|------|
| HEC-1-A 500nM DHEA    | 299.632 nM          | 3502.040 fmol/Mio/h | 31.928 fmol/Mio/h | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A 1000nM DHEA   | 480.195 nM          | 4816.805 fmol/Mio/h | 66.456 fmol/Mio/h | n.c. | n.c.                 | 0.707 fmol/Mio/h   | n.c.                | 0.673 fmol/Mio/h   | n.c. | n.c. |
| HEC-1-A 1000nM DHEA   | 527.306 nM          | 5063.847 fmol/Mio/h | 58.499 fmol/Mio/h | n.c. | n.c.                 | n.c.               | n.c.                | 0.966 fmol/Mio/h   | n.c. | n.c. |
| HEC-1-A 10nM E1       | n.c.                | n.c.                | n.c.              | n.c. | 7.083 nM             | 8.081 fmol/Mio/h   | 23.469 fmol/Mio/h   | 1.398 fmol/Mio/h   | n.c. | n.c. |
| HEC-1-A 10nM E1       | n.c.                | n.c.                | n.c.              | n.c. | 6.789 nM             | 8.859 fmol/Mio/h   | 31.603 fmol/Mio/h   | 1.538 fmol/Mio/h   | n.c. | n.c. |
| HEC-1-A 100nM E1      | n.c.                | n.c.                | n.c.              | n.c. | 70.124 nM            | 25.407 fmol/Mio/h  | 259.761 fmol/Mio/h  | 12.216 fmol/Mio/h  | n.c. | n.c. |
| HEC-1-A 100nM E1      | n.c.                | n.c.                | n.c.              | n.c. | 71.304 nM            | 34.643 fmol/Mio/h  | 304.473 fmol/Mio/h  | 15.599 fmol/Mio/h  | n.c. | n.c. |
| HEC-1-A 500nM E1      | n.c.                | n.c.                | n.c.              | n.c. | 355.688 nM           | 168.685 fmol/Mio/h | 1348.447 fmol/Mio/h | 77.748 fmol/Mio/h  | n.c. | n.c. |
| HEC-1-A 500nM E1      | n.c.                | n.c.                | n.c.              | n.c. | 321.471 nM           | 205.188 fmol/Mio/h | 2076.345 fmol/Mio/h | 109.444 fmol/Mio/h | n.c. | n.c. |
| HEC-1-A 1000nM E1     | n.c.                | n.c.                | n.c.              | n.c. | 648.344 nM           | 313.068 fmol/Mio/h | 3438.205 fmol/Mio/h | 192.607 fmol/Mio/h | n.c. | n.c. |
| HEC-1-A 1000nM E1     | n.c.                | n.c.                | n.c.              | n.c. | 645.325 nM           | 388.869 fmol/Mio/h | 4096.289 fmol/Mio/h | 227.757 fmol/Mio/h | n.c. | n.c. |
| HEC-1-A control       | n.c.                | n.c.                | n.c.              | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A control       | n.c.                | n.c.                | n.c.              | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A 10nM DHEA-S   | n.c.                | 8.146 nM            | n.c.              | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A 10nM DHEA-S   | n.c.                | 7.921 nM            | n.c.              | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A 100nM DHEA-S  | n.c.                | 89.308 nM           | n.c.              | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A 100nM DHEA-S  | n.c.                | 86.140 nM           | n.c.              | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A 500nM DHEA-S  | n.c.                | 449.489 nM          | n.c.              | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A 500nM DHEA-S  | n.c.                | 432.201 nM          | n.c.              | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A 1000nM DHEA-S | 793.913 fmol/Mio/h  | 673.400 nM          | n.c.              | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A 1000nM DHEA-S | 1302.654 fmol/Mio/h | 607.171 nM          | n.c.              | n.c. | n.c.                 | n.c.               | n.c.                | n.c.               | n.c. | n.c. |
| HEC-1-A 10nM E1-S     | n.c.                | n.c.                | n.c.              | n.c. | 31.455 fmol/Mio/h    | 5.997 nM           | n.c.                | 0.592 fmol/Mio/h   | n.c. | n.c. |
| HEC-1-A 10nM E1-S     | n.c.                | n.c.                | n.c.              | n.c. | 38.320 fmol/Mio/h    | 7.783 nM           | n.c.                | 0.771 fmol/Mio/h   | n.c. | n.c. |
| HEC-1-A 100nM E1-S    | n.c.                | n.c.                | n.c.              | n.c. | 345.704 fmol/Mio/h   | 64.799 nM          | 53.507 fmol/Mio/h   | 4.569 fmol/Mio/h   | n.c. | n.c. |
| HEC-1-A 100nM E1-S    | n.c.                | n.c.                | n.c.              | n.c. | 300.360 fmol/Mio/h   | 65.131 nM          | 45.295 fmol/Mio/h   | 4.082 fmol/Mio/h   | n.c. | n.c. |
| HEC-1-A 500nM E1-S    | n.c.                | n.c.                | n.c.              | n.c. | 1757.155 fmol/Mio/h  | 323.986 nM         | 252.669 fmol/Mio/h  | 20.533 fmol/Mio/h  | n.c. | n.c. |
| HEC-1-A 500nM E1-S    | n.c.                | n.c.                | n.c.              | n.c. | 1855.583 fmol/Mio/h  | 419.430 nM         | 257.309 fmol/Mio/h  | 43.819 fmol/Mio/h  | n.c. | n.c. |
| HEC-1-A 1000nM E1-S   | n.c.                | n.c.                | n.c.              | n.c. | 12910.448 fmol/Mio/h | 388.136 nM         | 2100.170 fmol/Mio/h | 74.554 fmol/Mio/h  | n.c. | n.c. |

n.c. - not calculable due to levels below the limit of detection or below the limit of quantification.

|               | IHC scores    |             |              |            |                 |               |  |  |  |
|---------------|---------------|-------------|--------------|------------|-----------------|---------------|--|--|--|
| Tissue sample | ABCG2 control | ABCG2 tumor | OSTβ control | OSTβ tumor | OATP1B3 control | OATP1B3 tumor |  |  |  |
| 2             | NA            | 100         | NA           | 60         | NA              | 45            |  |  |  |
| 3             | 100           | 100         | 100          | 90         | 135             | 90            |  |  |  |
| 6             | NA            | 90          | NA           | 80         | NA              | 135           |  |  |  |
| 7             | NA            | 100         | NA           | 20         | NA              | NA            |  |  |  |
| 9             | 100           | 100         | 150          | 75         | 180             | 225           |  |  |  |
| 10            | 100           | 100         | 100          | 95         | 135             | 180           |  |  |  |
| 11            | NA            | 100         | NA           | 130        | NA              | 158           |  |  |  |
| 14            | NA            | 100         | NA           | 70         | NA              | 180           |  |  |  |
| 15            | NA            | 100         | NA           | 8          | NA              | 135           |  |  |  |
| 16            | NA            | 100         | NA           | 98         | NA              | 135           |  |  |  |
| 18            | NA            | 90          | NA           | 8          | NA              | 45            |  |  |  |
| 19            | 100           | 70          | 100          | 20         | 135             | 60            |  |  |  |
| 20            | NA            | 60          | NA           | 50         | NA              | 43            |  |  |  |
| 21            | NA            | 100         | NA           | 85         | NA              | 180           |  |  |  |
| 22            | 100           | NA          | 100          | NA         | 135             | NA            |  |  |  |
| 23            | NA            | 78          | NA           | 48         | NA              | 88            |  |  |  |
| 24            | NA            | 90          | NA           | 14         | NA              | 53            |  |  |  |
| 25            | 100           | 50          | 100          | 60         | 180             | 135           |  |  |  |
| 26            | 100           | 100         | 100          | 23         | 135             | 90            |  |  |  |
| 30            | NA            | 90          | NA           | 0          | NA              | 40            |  |  |  |
| 31            | NA            | 85          | NA           | 55         | NA              | 113           |  |  |  |
| 33            | NA            | 100         | NA           | 88         | NA              | 180           |  |  |  |
| 34            | NA            | 100         | NA           | 65         | NA              | 40            |  |  |  |
| 35            | 100           | 100         | 100          | 85         | 135             | 50            |  |  |  |
| 38            | 100           | 98          | 100          | 30         | 180             | 180           |  |  |  |
| 39            | NA            | 100         | NA           | 98         | NA              | 40            |  |  |  |
| 40            | NA            | 100         | NA           | 95         | NA              | 135           |  |  |  |
| 44            | 100           | NA          | 100          | NA         | 180             | NA            |  |  |  |
| 46            | 100           | 45          | 100          | 80         | 135             | 135           |  |  |  |
| 47            | 100           | 95          | 98           | 80         | 113             | 103           |  |  |  |
| 48            | NA            | 100         | NA           | 120        | NA              | 135           |  |  |  |
| 49            | 100           | 35          | 100          | 90         | 135             | 90            |  |  |  |
| 50            | NA            | 90          | NA           | 80         | NA              | 90            |  |  |  |
| 51            | NA            | 70          | NA           | 40         | NA              | 160           |  |  |  |
| 52            | NA            | 83          | NA           | 82         | NA              | 68            |  |  |  |
| 53            | 100           | NA          | 100          | NA         | 180             | NA            |  |  |  |
| 54            | 100           | 55          | 100          | 35         | 158             | 33            |  |  |  |
| 55            | NA            | 21          | NA           | 7          | NA              | 88            |  |  |  |
| 56            | 100           | 50          | 100          | 80         | 135             | 90            |  |  |  |
| 57            | 100           | 100         | 100          | 90         | 68              | 90            |  |  |  |
| 58            | 100           | NA          | 100          | NA         | 158             | NA            |  |  |  |
| 60            | 100           | NA          | 100          | NA         | 135             | NA            |  |  |  |
| 61            | 100           | 15          | 100          | 20         | 135             | 10            |  |  |  |
| 62            | 100           | 100         | 100          | 100        | 158             | 135           |  |  |  |
| 63            | 100           | 98          | 100          | 80         | 135             | 10            |  |  |  |
| 64            | 100           | 75          | 100          | 70         | 135             | 30            |  |  |  |
| 65            | 100           | NA          | 100          | NA         | 113             | NA            |  |  |  |
| 66            | NA            | 90          | NA           | 80         | NA              | 90            |  |  |  |
| 68            | NA            | 100         | NA           | 90         | NA              | 90            |  |  |  |
| 69            | NA            | 80          | NA           | 80         | NA              | 30            |  |  |  |
| 70            | 100           | 75          | 100          | 0          | 135             | 180           |  |  |  |
| 71            | 100           | 85          | 100          | 13         | 180             | 180           |  |  |  |

Table S4. Results of immunohistochemistry presented as scores.

NA – data not available.