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The plans of this supplementary material are as follows. The first section describes the 
three type of clusters in detail. Section 2 gives the detailed procedure of how we impute 
the information of transmission chains of asymptomatic cases. The following section 
focuses on the statistical model of constructing the likelihood. Section 4 gives two 
approaches to obtain the confidence interval of average reproductive number and 
heterogeneity parameter. Section 5 defines contact types among infections. Section 6 
supplies the procedure to estimate the size of accumulated infected cases during 1 Jan 
2020 and 31 March 2020. The last section provides detailed procedures in assessing the 
effect of vaccination for different proportions of population. Table S1 and S2 are 
provided at the end of the material. 

1. Detailed information on three types of clusters 

Simple transmission chain 
A simple transmission chain has no more than two generations of cases, i.e. each chain 
contains only one primary case and all its secondary cases (if any). Isolated cases also 
belong to this type. For each simple transmission chain, we can recover the transmission 
history completely from the public information. 

Ordinary transmission chain 
An ordinary transmission chain consists of a series of transmission events in close spatio-
temporal proximity. We can identify the primary case in this chain but may not recover 
the transmission history completely due to the low resolution of the public information. 
There are a lot of uncertainty of transmission relationship between inner-generations and 
inter-generations which hinders clarifying who infected whom. However, we may 
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calculate the overall size of a transmission chain, i.e. the total number of cases infected, 
which is easier to obtain from the public information. 

Complex transmission chain 
A complex transmission chain has multiple primary cases in which each of them has an 
equal chance to cause secondary cases. Those primary cases had similar contact history 
and it is hard to determine which individual is the first infected one, thus regarding them 
as the primary cases. 

2. Imputation Mechanism 
Since the individual level information of asymptomatic cases is hardly accessible, we 
impute this information by assuming missing at random. There are no diagnosed 
asymptomatic infections in urban area in our study. For the rural area, based on the 
constructed 655 transmission chains of confirmed infections with symptoms, the 194 
asymptomatic infections are randomly allocated into those chains with a multinomial 
distribution for each case. The probability of each chain is proportional to the overall 
number of secondary cases. Without special explanation, the rest analysis is constructed 
based on data of imputed transmission chains, with a total of 1136 cases. 

3. Constructing the likelihood 
In previous studies, the average reproductive number 𝑅𝑅 and the heterogeneity are mostly 
cared as they influence the potential size of an infectious disease collaboratively. By 
deploying a likelihood-based approach first proposed by,1 we can take the asymptomatic 
cases into consideration based on their method. Firstly, we assume the offspring of one 
symptomatic case follows a negative binomial distribution with size parameter equal to 
the heterogeneity parameter 𝑘𝑘 and mean 𝑅𝑅 (Table S1).2 Without loss of generality, 
everyone is assumed to has the same probability of being asymptomatic, denoted by 𝑝𝑝 
and the asymptomatic cases have less infectiousness with a discounted average 
reproductive number 𝛼𝛼𝛼𝛼, where 𝛼𝛼 represents the ratio of infectiousness within 
symptomatic and asymptomatic cases of SARS-CoV-2, taking value of 0.263 in this 
paper. Thus, the offspring distribution of a single negative binomial distribution can be 
expanded to a mixture of negative binomial distribution presented by equation 1. Let 𝑆𝑆 
denotes the number of secondary cases infected by an arbitrary case and 𝑌𝑌 denotes the 
status of one individual to be asymptomatic or not taking values on {0,1}, 
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Having specifying the distribution of secondary cases, we can compute the likelihood of 
each type of clusters respectively based on the approach proposed by.2 Regarding the first 
type of cluster, simple transmission chains, where only one primary cases transmitted to 
exactly one generation before the whole transmission chain die out, the likelihood can be 
expressed directly by a productive of offspring distribution equation 2. Suppose there are 
overall 𝑠𝑠𝑖𝑖 cases in the 𝑖𝑖-th chain of simple transmission chains, 𝑖𝑖 = 1,⋯ ,𝑛𝑛𝐼𝐼. 

𝐿𝐿𝐼𝐼(𝑅𝑅,𝑘𝑘) = ∏ 𝑓𝑓1
𝑛𝑛𝐼𝐼
𝑖𝑖=1 (𝑠𝑠𝑖𝑖 − 1;𝑅𝑅,𝑘𝑘)      (2) 

Considering the ordinary transmission chain with one primary case and the information 
on the ultimate size of transmission chain, we can approximate the transmission process 
through a Galton-Watson branching process. Let 𝑈𝑈 denotes the ultimate size of a 
transmission chain. According to,1 the probability of 𝑈𝑈 to be 𝑗𝑗 is equivalent to 
1
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Thus, probability of a transmission chain with one primary case having an overall size of 
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Assume that the 𝑗𝑗-th ordinary transmission chain has an overall size of 𝑞𝑞𝑗𝑗, 𝑗𝑗 = 1,⋯ ,𝑛𝑛𝐼𝐼𝐼𝐼, 
then the likelihood of ordinary transmission chains can be presented as, 

𝐿𝐿𝐼𝐼𝐼𝐼(𝑅𝑅,𝑘𝑘) = �𝑓𝑓2
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Additionally, for the complex transmission chain with more than one primary cases, we 
can classify these clusters into two types. As to type I complex transmission chain with 
known number of primary cases, denoted by 𝑚𝑚. Let 𝑇𝑇 be the overall size of a complex 
transmission chain. According to,4 the probability of a complex transmission chain to 
have an ultimate size of 𝑗𝑗 equals to 𝑚𝑚
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As to type II complex transmission chain with unknown number of primary cases, we 
assume all the primary cases are transmitted by an external case. Therefore, the type II 
complex transmission chain with the external case comprise a complete ordinary 
transmission chain with only one primary case and overall size as 𝑗𝑗 + 1. Let 𝛿𝛿 denote the 
status of complex transmission chain to belong to type I or not, then 

𝑃𝑃(𝑇𝑇 = 𝑗𝑗) = 𝛿𝛿𝑓𝑓3(𝑗𝑗,𝑚𝑚;𝑅𝑅, 𝑘𝑘) + (1 − 𝛿𝛿)𝑓𝑓2(𝑗𝑗 + 1;𝑅𝑅, 𝑘𝑘) 

Assume that the 𝑡𝑡-th complex transmission chain has an overall size of 𝑟𝑟𝑡𝑡, 𝑡𝑡 = 1,⋯ ,𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼, 
then the likelihood of complex transmission chains can be presented as, 

𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼(𝑅𝑅,𝑘𝑘) = �(
𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼

𝑡𝑡=1

𝛿𝛿𝑡𝑡𝑓𝑓3(𝑟𝑟𝑡𝑡 ,𝑚𝑚𝑡𝑡;𝑅𝑅,𝑘𝑘) + (1 − 𝛿𝛿𝑡𝑡)𝑓𝑓2(𝑟𝑟𝑡𝑡 + 1;𝑅𝑅,𝑘𝑘)) 

The complete likelihood can be derived by a production of 𝐿𝐿𝐼𝐼(𝑅𝑅,𝑘𝑘), 𝐿𝐿𝐼𝐼𝐼𝐼(𝑅𝑅,𝑘𝑘) and 
𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼(𝑅𝑅, 𝑘𝑘)5 and thereby the estimation of 𝑅𝑅 and 𝑘𝑘 can be derived by maximum the mixed 
likelihood function. 

4. Confidence interval 

Likelihood ratio test 

To derive the confidence interval of 𝑅𝑅 and 𝑘𝑘 simultaneously, we deploy likelihood ratio 
test for asymptotic estimation. Traditional likelihood ratio test can be described as 
follows; under the null hypothesis 𝐻𝐻0:𝜃𝜃 ∈ 𝛺𝛺0, the likelihood ratio asymptotically follows 
a 𝜒𝜒2 distribution, 
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max
𝜃𝜃∈𝛺𝛺0

𝐿𝐿(𝑥𝑥;𝜃𝜃)

max
𝜃𝜃∈𝛺𝛺

𝐿𝐿(𝑥𝑥;𝜃𝜃)

−2log(𝛬𝛬𝑛𝑛) ∼ 𝜒𝜒𝑑𝑑𝑑𝑑𝑑𝑑(𝛺𝛺)−𝑑𝑑𝑑𝑑𝑑𝑑(𝛺𝛺0)
2

 

Thus, let 𝑅𝑅� and 𝑘𝑘� denotes the maximum likelihood estimation. The corresponding 
confidence interval are constructed by letting 𝛺𝛺0 = {𝑅𝑅 ∈ (0, +∞),𝑘𝑘 = 𝑘𝑘�} and 𝛺𝛺0 = {𝑅𝑅 =
𝑅𝑅� , 𝑘𝑘 ∈ (0, +∞)} respectively. 



Biased-correlated and accelerated bootstrap 
As a stochastic approach for constructing confidence interval for most complex 
conditions, bootstrapping plays an important role in the field of statistical inference. The 
basic bootstrap method, however, might perform poorly if the distribution is highly 
skewed. To guarantee the accuracy of confidence interval, we adopt a biased-correlated 
and accelerated confidence interval with R package 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (BC𝑎𝑎).6 

5. Definition of contact type 
• Primary case: The individual who was first infected in a cluster. 

• Household: A household member living with a SARS-CoV-2 infected individual. 

• Social: Friends, coworkers and classmates who study, work or are in close contact 
with the primary case. 

• Community: Individual who interacts with SARS-CoV-2 infections in restaurants, 
entertainment venues, or other service settings. 

6. Estimating the accumulative size of infected cases 
Assuming the transmission follows a Galton-Watson branching process, we can 
reconstruct the transmission chain and predict the ongoing transmission process by 
simulation. The complete procedure is displayed as follows, 

• According to the collected transmission chain, we define 𝑚𝑚 primary cases with 𝑚𝑚 
transmission chains. All the subsequent infected cases belong to one of 𝑚𝑚 chains. 

• Set the simulation times 𝐵𝐵 = 1000; Here we simulation 1000 times of 
transmission process. 

• For 𝑖𝑖-th transmission chain, 𝑖𝑖 = 1,⋯ ,𝑚𝑚, we simulate an independent branching 
process. The secondary cases are generated by sampling from the mixture of 
binomial distribution [eq1] and the infected time of secondary cases are 
approximated through sampling from the estimated generation time which follows 
a weibull distribution(𝛼𝛼 = 2.015,𝛽𝛽 = 6.632). 

• Calculate the summation of cases in 𝑚𝑚 chains who are infected before a certain 
date as the estimation of overall size of infection before the date. 

• Repeat Step 3-4 for 𝐵𝐵 times. Assume the collected numbers are 𝑆𝑆 = 𝑞𝑞1, 𝑞𝑞2,⋯ , 𝑞𝑞𝐵𝐵. 
The confidence interval is derived by taking 2.5% and 97.5% quantiles in the set 
𝑆𝑆. 

Thus, we can reconstruct the transmission process and predict the overall size of 
secondary infections by a certain date if no external infected cases are detected. To 
simplify the procedure of simulation, we assume all the secondary cases infected by a 



single infected case have identical generation time. Nevertheless, the generation time of 
those infected by different cases are set to be different and sampled independently. 

7. Assessment of the effect of vaccination 
To evaluate the effect of vaccination, we estimate the overall size of secondary infections 
as of 31 Mar 2020. Assuming the efficacy of vaccination is 80%, which is equivalent to a 
population wide control with control effort 𝑐𝑐 = 0.8 mentioned in.2 The vaccination 
induced a population level effect identical to a reduction of average reproduction number 
𝑅𝑅 to 0.2𝑅𝑅, where the offspring distribution of one infection [eq1] is subsequently altered. 
The estimation of number of secondary infections is obtained by the simulation 
procedures illustrated in Section 6. 

Additionally, we also assess the effect of vaccinating a proportion of population. 
Assuming the proportion of vaccination is 𝑞𝑞%, we estimate the effect of partial 
vaccination by randomly letting 𝑞𝑞% of transmission chains share the average average 
reproductive number as 0.2𝑅𝑅 and the average average reproductive number of rest 
transmission chains takes the value of 𝑅𝑅. We then estimate the overall size of secondary 
infection based on Section 6. 

  



Table S1. Notations of the model 

Symbol Type Description 

i Data Index of simple transmission chain 

𝑠𝑠𝑖𝑖 Data The number of cases in chain i 

j Data Index of ordinary transmission chain 

𝑞𝑞𝑗𝑗 Data The number of cases in chain j 

t Data Index of complex transmission chain 

𝑟𝑟𝑡𝑡 Data The number of cases in chain t 

𝛿𝛿𝑡𝑡 Data Status of complex transmission chain 𝑡𝑡 to belong to 
type I or not 

𝑚𝑚𝑡𝑡 Data The number of primary cases in Type I complex 
transmission chain 𝑡𝑡 

f Function Offspring distribution 

Q Function Generating function of the offspring distribution. 

𝑅𝑅 Parameter Average reproductive number 

𝑘𝑘 Parameter Dispersion parameter, 𝑘𝑘 < 1 indicates strong 
heterogeneity 

𝑝𝑝 Parameter The probability of being asymptomatic 

𝛼𝛼 Parameter The ratio of infectiousness within symptomatic and 
asymptomatic cases of SARS-CoV-2 

 

 

 



Table S2. Characteristics of the three types of transmission chains for SARS-CoV-2 

outbreak in rural and urban areas 

Chain type 
Total number of 

chains (n=655) 

Total number of 

cases (n=942) 

Average chain 

size 

Range of chain 

size 

Rural areas     

Simple 639 751 1.2 1–5 

Ordinary 15 186 12.4 3–44 

Complex 1 4 4 4–4 

Urban areas     

Simple 36 47 1.3 1 - 4 

Ordinary 5 78 15.6 3 - 45 

Complex 2 10 5 5 - 5 

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2 
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