
Supplementary Material 1 

Regression with highly correlated predictors: variable omission is not 
the solution 

 

Section S1: Additional information regarding the blood analysis data 

Table S1. Full subset of the data from the study of Ratzinger et al. (2014) used for the blood cell 
example in the paper. White blood cells consist of the five subtypes neutrophils eosinophils, basophils, 
lymphocytes and monocytes and hence, their sum equals the white blood cell count.  

Observation Neutrophils (G/L) 
Eosinophils 

(G/L) 

Basophils 

(G/L) 

Lymphocytes 

(G/L) 

Monocytes 

(G/L) 

White blood 

cell count 

(G/L) 

C-reactive 

protein 

(mg/dL) 

1 11.5 0.0 0.1 0.6 1.1 13.3 15.99 
2 13.9 0.0 0.0 3.0 3.3 20.2 13.27 
3 13.0 0.2 0.0 0.2 1.1 14.5 14.99 
4 11.0 0.1 0.0 0.6 0.8 12.5 9.93 
5 10.1 0.0 0.0 0.6 0.8 11.5 16.70 
6 4.2 0.0 0.0 1.0 0.9 6.1 7.74 
7 11.9 0.2 0.0 1.4 1.0 14.5 10.13 
8 4.5 0.2 0.0 0.7 0.6 6.0 4.86 
9 3.5 0.0 0.0 0.5 0.0 4.0 15.02 
10 6.4 0.2 0.0 1.2 0.6 8.4 3.76 
11 0.0 0.0 0.0 0.4 0.0 0.4 12.53 
12 3.5 0.0 0.0 0.3 0.4 4.2 15.72 
13 0.0 0.0 0.1 1.0 0.5 1.6 1.39 
14 10.5 0.0 0.0 1.2 1.3 13.0 7.66 
15 0.4 0.1 0.0 0.3 0.1 0.9 7.09 
16 7.5 0.0 0.0 1.9 0.6 10.0 10.34 
17 4.9 0.0 0.0 0.3 0.3 5.5 16.58 
18 6.1 0.4 0.1 1.4 0.8 8.8 6.09 
19 9.5 0.3 0.0 1.4 0.9 12.1 5.01 
20 1.3 0.0 0.0 0.3 0.2 1.8 8.28 

 
 

 



Section S2: Additional information regarding the climate change example 

 
Figure S1. Autocorrelation (left) and partial autocorrelation (right) function of the residuals of the 

non-linear regression model for temperature anomalies adjusted by year and CO2 emission 

 

Table and functional form of the model for temperature anomalies with year and CO2 emission as 
independent variables  

Table S2. Results of the linear regression model for temperature anomalies adjusted for year linearly 
and CO2 emission with natural cubic splines with 5 degrees of freedom. The 95% CI was computed 
using the HAC estimator. 

Variable Coefficient Standard error 
Intercept -22.140948 5.6256498 
Year 0.011681 0.0029903 
ns(carbon_emissions. df = 5)1 -0.506030 0.2515340 
ns(carbon_emissions. df = 5)2 -0.985015 0.2430262 
ns(carbon_emissions. df = 5)3 -0.513098 0.3244648 
ns(carbon_emissions. df = 5)4 -1.151119 0.4600711 
ns(carbon_emissions. df = 5)5 -0.393499 0.3535838 

 

The functional form of the linear regression model for the expected value of temperature anomalies 
adjusted for CO2 emission with natural cubic splines with 5 degrees of freedom and year linearly is 
given by 𝐸൫𝑡𝑒𝑚𝑝௔௡௢௠௔௟௬൯ ൌ 𝑋𝛽መ.  
where 𝑋𝛽መ ൌ  െ22.140948 ൅ 0.01168096 ∗ 𝑦𝑒𝑎𝑟 െ 0.50603025 ∗ ሾ1ሿ െ 0.98501459 ∗ ሾ2ሿ െ 0.51309841 ∗ ሾ3ሿെ 1.1511193 ∗ ሾ4ሿ െ 0.3934988 ∗ ሾ5ሿ 
and the variable CO2 emission is pretransformed into the natural cubic spline bases using the ns 
function of the R package splines yielding the respective values for [1] - [5]. 

 



Sensitivity analysis 

Data collected in a time sequence manner typically contains autocorrelated errors since one observation 
point at a specific time tends to be correlated with its adjacent observation point. Serial correlation of 
current errors terms with past ones violates the elementary regression model assumption of 
independent and identically distributed (iid) error terms. This model misspecification can cause 
distortions in the ordinary least-squares regression procedure similar to the consequences introduced 
by near collinearity such as biased standard errors of the model parameters.  
 

In order to study the uncertainty inferred by the autocorrelated residuals. a non-linear regression 
model with ARMA errors was additionally fitted to the climate data example using the auto.arima 
function of the R-package forecast (31). Again. the independent variable CO2 emission was included in 
the modelling process using natural cubic splines with 5 degrees of freedom and year linearly. For the 
selection of the ARMA parameters 𝑝 and 𝑞. the lowest bias corrected Akaike information criterion 
(AICc) value was used. The auto.arima function suggested a regression model with ARMA(1.0.2) errors 
as the best fit to the observed data despite the strong evidence of non-stationarity and trend of the time 
series provided by the Augmented Dickey-Fuller test (TDF=-2.24. p=0.47) and the visual time series 
display in Figure 2. A possible explanation might lie in the structural breaks within the temperature 
time series causing standard unit root tests to fail as stated by Estrada and Perron (32). The Ljung–Box 
test was conducted to examine the presence of autocorrelation among the model residuals and gave no 
evidence for a rejection of the null hypothesis of independence (TLB=0.01. df=1. p=0.93). The time plot 
of the residuals. the corresponding ACF. and the distribution of the model residuals were also inspected 
but did not raise suspicions regarding model violations. Since the estimated regression coefficients of 
the non-linear regression model with ARMA errors have no straightforward interpretation again only 
the partial effect plots are illustrated in supplementary figure 2. 

 
Despite the extensive overlap of the partial effect curves corresponding to year and CO2 emissions. the 
superimposed partial effect plots generated by the standard regression (reg) approach and the 
regression with ARMA errors (regARMA) model illustrates an increased uncertainty of the estimated 
effect curve in the regARMA model as can be seen in supplementary figure 2. The regression model 
with ARMA(1.2) errors indicates a stronger loss of precision regarding the model parameters than the 
standard regression approach. Despite these deviations in the spectrum of the confidence interval. the 
estimated partial effects of both models only show slight differences at the extremes of the data ranges. 
 

 
Figure S2. Partial effect plots obtained by classical regression and the regression model using 

ARMA errors to adjust for the serially correlated error terms. 
 


