
Table S1. Ranking of top 20 articles (sorted by TLC)  

# Article Journal TLC TGC TLC/TGC 
Ratio (%) 

1 Nanji KC et al. (2014) [1] J AM MED INFORM ASSN 51 116 44.0 
2 Phansalkar S et al. (2013) [2] J AM MED INFORM ASSN 40 112 35.7 
3 Payne TH et al. (2015) [3] J AM MED INFORM ASSN 38 85 44.7 
4 Seidling HM et al. (2011) [4] J AM MED INFORM ASSN 34 77 44.2 
5 McCoy AB et al. (2012) [5] J AM MED INFORM ASSN 31 70 44.3 
6 Bryant AD et al. (2014) [6] APPL CLIN INFORM 29 92 31.5 
7 Ancker JS et al. (2017) [7] BMC MED INFORM DECIS 29 127 22.8 
8 Seidling HM et al. (2014) [8] INT J MED INFORM 25 50 50.0 
9 Coleman JJ et al. (2013) [9] BMC MED INFORM DECIS 24 58 41.4 

10 Riedmann D et al. (2011) [10] BMC MED INFORM DECIS 23 44 52.3 
11 Slight SP et al. (2013) [11] PLOS ONE 22 51 43.1 
12 Nanji KC et al. (2018) [12] J AM MED INFORM ASSN 20 48 41.7 
13 Saverno KR et al. (2011) [13] J AM MED INFORM ASSN 18 79 22.8 
14 Carspecken W et al. (2013) [14] PEDIATRICS 18 59 30.5 
15 Bell GC et al. (2014) [15] J AM MED INFORM ASSN 17 122 13.9 
16 Wright A et al. (2016) [16] J AM MED INFORM ASSN 17 56 30.4 
17 Russ AL et al. (2012) [17] INT J MED INFORM 16 55 29.1 
18 Eppenga WL et al. (2012) [18] J AM MED INFORM ASSN 16 31 51.6 
19 Scott GPT et al. (2011) [19] J AM MED INFORM ASSN 15 36 41.7 
20 Duke JD et al. (2013) [2] J AM MED INFORM ASSN 15 33 45.6 Abbreviations: TLC = Total local citations received, TGC = Total global citations received, J AM MED INFORM ASSN = Journal of the American Medical Informatics Association, BMC MED INFORM DECIS = BMC Medical Informatics and Decision Making, INT J MED INFORM = International Journal of Medical Informatics. 

 

  



Table S2. The content analysis for 24 most impactful articles (TGC ≥ 40 & TLC ≥ 10)  

Articles TLC TGC TLC/TG
C Ratio Study type Study 

location 

Study 
populatio

n 

Alerts  
Type 

Alert  
Topic 

Analysis 
method 

(Nanji KC et al., 2014) [7] 51 116 0.44 Observational Outpatient Physician/ Nurse/Other clinician Not specified ADE/Other recommendation Quali-Quanti (Phansalkar S et al., 2013) [2] 40 112 0.36 Observational Not specified NA Soft-stop DDI Quali-Quanti 
(Payne TH et al., 2015) [3] 38 85 0.45 Observational N/A Physician/ IT/Academia /Diverse backgrounds expert 

Not specified DDI Qualitative 
(Seidling HM et al., 2011) [4] 34 77 0.44 Observational Outpatient/Inpatient Not specified Not specified DDI Quantitative 
(McCoy AB et al., 2012) [5] 31 70 0.44 Focus group/Observational Inpatient Clinician Not specified 

ADE/ Laboratory/Other recommendation 
Quali-Quanti 

(Ancker JS et al., 2017) [7] 29 127 0.23 Observational Outpatient Physician/ Nurse Interruptive Drug/ Clinical practice Quantitative (Bryant AD et al., 2014) [6] 29 92 0.32 Observational Inpatient Physicians Interruptive ADE Quantitative (Seidling HM et al., 2014) [8] 25 50 0.50 Observational Outpatient/Inpatient N/A Not specified DDI Quali-Quanti (Coleman JJ et al., 2013) [9] 24 58 0.41 Focus group Not specified Pharmacist N/A Allergy/ DDI Qualitative 



(Riedmann D et al., 2011) [10] 23 44 0.52 Focus group Not specified CPOE expert N/A ADE Qualitative (Slight SP et al., 2013) [11] 22 51 0.43 Observational Outpatient Physician Hard-stop DDI Quali-Quanti 
(Nanji KC et al., 2018) [12] 20 48 0.42 Observational Inpatient Physician/ Nurse/Other clinician Hard-stop 

ADE/ Substitution/Other recommendation 
Quali-Quanti 

(Saverno KR et al., 2011) [13] 18 79 0.23 Interventional/ On-site visit Community/Inpatient/ Other Pharmacist Hard-stop DDI Quali-Quanti 
(Carspecken CW et al., 2013) [14] 18 59 0.31 Observational PICU One specific patient Pop-up Allergy Qualitative 

(Bell GC et al., 2014) [15] 17 122 0.14 Interventional Inpatients/ Outpatient/Home Physician/ Pharmacist Pop-up/Email Allergy Quali-Quanti 
(Wright A et al., 2016) [16] 17 56 0.30 Observational Entire hospital Chief Medical Information Officers 

Not mentioned All types of EHR alert Quali-Quanti 
(Russ AL et al., 2012) [17] 16 55 0.29 Observations/ Interview Outpatient Physician/ Nurse/ Pharmacist Pop-up ADE Qualitative 

(Scheife RT et al., 2015) [20] 12 66 0.18 Focus group N/A Diverse backgrounds expert N/A DDI Qualitative 
(Russ AL et al., 2014) [21] 12 50 0.24 Interventional N/A Prescriber Not mentioned ADE Qualitative (Topaz M et al., 2016) [22] 12 45 0.27 Observational Inpatient Provider Hard-stop Allergy Quali-Quanti 



(Romano MJ et al., 2011) [23] 11 192 0.06 Observational Outpatient/ Emergency Physician N/A N/A Qualitative 
(Baysari MT et al., 2011) [24] 11 46 0.24 Observational All wards(Except ED and ICU) Physician Hard-stop All types of EHR alert Quali-Quanti (Wright A et al., 2011) [25] 11 45 0.24 Observational N/A N/A N/A N/A Qualitative 
(Hoffman JM et al., 2014) [26] 10 143 0.07 Interventional All primary clinical services Physician Interruptive Allergy Qualitative 

 
  



 

Figure S1. Distribution of yearly publications and the yearly averages of TGC per article 



 
Figure S2. Bibliographic coupling (A = Medication-related cluster, B = Best practice cluster) 
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